留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

富营养河口水体藻华粒级结构的调控机制研究

张亚锋 侯敏驰 陈容 王适 雷越 王旭涛 殷克东

张亚锋,侯敏驰,陈容,等. 富营养河口水体藻华粒级结构的调控机制研究[J]. 海洋学报,2022,44(9):1–9 doi: 10.12284/hyxb2022142
引用本文: 张亚锋,侯敏驰,陈容,等. 富营养河口水体藻华粒级结构的调控机制研究[J]. 海洋学报,2022,44(9):1–9 doi: 10.12284/hyxb2022142
Zhang Yafeng,Hou Minchi,Chen Rong, et al. Researches on size structure of algal blooms in eutrophic estuarine waters[J]. Haiyang Xuebao,2022, 44(9):1–9 doi: 10.12284/hyxb2022142
Citation: Zhang Yafeng,Hou Minchi,Chen Rong, et al. Researches on size structure of algal blooms in eutrophic estuarine waters[J]. Haiyang Xuebao,2022, 44(9):1–9 doi: 10.12284/hyxb2022142

富营养河口水体藻华粒级结构的调控机制研究

doi: 10.12284/hyxb2022142
基金项目: 广东省自然资源厅海洋经济项目(GDNRC[2021]62);广东省重点领域研究计划(2020B1111350001);国家海洋环境监测中心项目(2018-42000−41090067);南方海洋科学与工程广东省实验室(珠海)自主科研项目(SML2021SP204);国家自然科学基金−广东联合基金(U1701247)。
详细信息
    作者简介:

    张亚锋(1987-),男,河南省郑州市人,高级工程师,从事河口富营养化生态效应研究。E-mail: zhangyaf@zjnhjg.mee.gov.cn

    通讯作者:

    王旭涛,男,研究员,从事河口藻类生态学研究。E-mail: wangxutao@zjnhjg.mee.gov.cn

    殷克东,男,教授,主要研究河口营养盐动力学。E-mail: yinkd@mail.sysu.edu.cn

Researches on size structure of algal blooms in eutrophic estuarine waters

  • 摘要: 为探究富营养河口水体藻华粒级结构的调控机制,本研究利用枯水期珠江口上游河水、下游海水及其等比例混合水进行培养实验,跟踪监测水体中叶绿素a和营养盐的浓度变化,并利用稀释实验估算藻类生长速率(μ)和小型浮游动物的摄食速率(m),以阐明上行控制(营养盐刺激)和下行控制(摄食影响)对藻类粒级结构的影响。结果显示:营养加富能增加藻类的生物量,藻类群落的优势粒级由超微型和微型转换为小型;加富河水中μ维持2~3 d高值后下降,速率为(1.13±0.37)d−1,加富海水中μ逐步增加,速率为(1.06±0.16)d−1,加富混合水中μ轻微波动,速率为(0.58±0.14)d−1,总体上小型藻类μ最大。3组加富水体中m总体均先增大后下降,粒级差异不明显。藻类被小型浮游动物摄食率(m/μ)随粒级增大而减小,说明富营养刺激大粒级的生长,大粒级面临的被摄食压力较小。m/μ随藻类每日的比生长速率(µChl a)降低而增加,说明藻华前期由上行控制主导,后期下行控制作用相对加强。本研究表明,富营养化不仅能够改变藻华的生物量,而且能影响其粒级结构,初步阐明了富营养河口水体中藻华粒级结构的调控机制。
  • 图  1  自然和营养加富的海水、混合水和河水中3种粒级叶绿素a的浓度

    a、c和e是自然水体,b、d和f为营养加富水体;误差线代表标准偏差

    Fig.  1  Concentrations of three size fractionation chlorophyll a in sea water, mixed water and river water

    a, c , e and b, d, f indicate ambient nutrients and nutrient addition conditions, respectively; the error bars indicate standard deviation

    图  2  培养实验中自然和营养加富的海水、混合水和河水中3种粒级藻类每日的比生长速率(µChl a

    a、c和e是自然水体,b、d和f为营养加富水体

    Fig.  2  Daily algal specific growth rates (µChl a) for three size fractionation phytoplankton during the incubation in the sea water, mixed water and river water

    a, c, e and b, d, f indicate ambient nutrients and nutrient addition conditions, respectively

    图  3  培养实验中营养加富的海水、混合水和河水中3种粒级藻类和总体的生长速率(µ)、小型浮游动物的摄食速率(m)以及藻类被小型浮游动物的摄食率(m/μ

    误差线代表标准偏差

    Fig.  3  Microzooplankton grazing rates (m), algal growth rates (µ) and the consumption ratios of phytoplankton by microzooplankton (m/µ) for three size fractionation phytoplankton and total phytoplankton during the incubation in nutrient addition sea water, mixed water and river water

    The error bars indicate standard deviation

    图  4  在营养加富的海水、混合水和河水中小型浮游动物的摄食速率(m)和藻类的生长速率(µ)关系

    实线代表显著相关(p<0.05),在加富混合水和河水中相关性不显著,在加富海水显著相关(R2=0.389),在3类盐度水体中总体(黑线)显著相关(R2=0.137)

    Fig.  4  Relationships between microzooplankton grazing rates (m) and algal growth rates (µ) in nutrient added sea water, mixed water and river water

    The solid line indicates a significant regression (p<0.05), the regressions are not significant in both nutrient added mixed water and river water, but significant in nutrient added sea water (R2=0.389) and the total three-salinity water (black line) (R2=0.137)

    图  5  在营养加富的海水、混合水和河水中3种粒级的藻类被小型浮游动物摄食率(m/µ)(A)及3种粒级藻类叶绿素a浓度在培养初始和结束时各自占比(B)

    误差线代表标准偏差,不同字母代表显著性差异

    Fig.  5  Ratios of three size fractionation phytoplankton consumed by microzooplankton (m/µ) (A) and percentages of three size fractionation Chl a concentration to total Chl a concentration in the initial and end incubation (B) in the nutrient added sea water, mixed water and river water

    The error bars indicate standard deviation; different letters indicate significant differences

    图  6  在营养加富的海水、混合水和河水中藻类的比生长速率(µChl a)和其被小型浮游动物摄食率(m/µ)的关系

    实线代表显著相关(p<0.05),R2=0.385

    Fig.  6  Relationships between algal specific growth rates (µChl a) and their ratios consumed by microzooplankton (m/µ) in the nutrient added sea water, mixed water and river water

    The line indicates a significant regression (p<0.05) and R2=0.385

    表  1  培养实验中自然和营养加富的河水、混合水和海水的总无机氮(TIN)、磷酸盐(P)的浓度变化(平均值±标准偏差,单位:µmol/kg)

    Tab.  1  The concentrations (mean±SD, unit: µmol/kg) of total inorganic nitrogen (TIN) and phosphate (P) during the incubation in natural and nutrient addition river water, mixed water and sea water

    培养时间河水加富河水混合水加富混合水海水加富海水
    总无机氮TIN0150.32±2.53200.18±3.1290.66±1.85206.95±3.5126.36±2.52144.89±3.60
    1124.31±3.18169.01±1.0489.64±0.08178.95±6.1020.49±1.69131.06±0.41
    284.63±1.30144.69±1.1472.05±7.12141.77±0.6615.68±0.53116.64±2.49
    372.24±1.37123.19±1.6268.49±2.56113.16±1.0112.19±1.11108.28±0.57
    448.21±2.45113.38±9.4866.49±5.05107.85±1.8811.37±1.09104.78±2.17
    547.05±4.65103.14±0.4948.45±3.6589.55±2.411.25±0.0586.10±1.23
    磷酸盐P00.80±0.117.01±0.120.57±0.046.83±0.240.38±0.026.56±0.20
    10.26±0.016.68±0.620.31±0.016.64±0.130.28±0.026.38±0.41
    20.12±0.016.02±0.480.29±0.014.85±0.220.34±0.016.01±0.34
    30.12±0.013.51±0.290.26±0.014.55±0.050.33±0.035.87±0.17
    40.15±0.021.19±0.100.28±0.013.30±0.050.34±0.015.60±0.06
    50.18±0.020.56±0.020.31±0.011.14±0.210.30±0.025.08±0.05
    下载: 导出CSV
  • [1] Strom S. Novel interactions between phytoplankton and microzooplankton: their influence on the coupling between growth and grazing rates in the sea[J]. Hydrobiologia, 2002, 480(1/3): 41−54. doi: 10.1023/A:1021224832646
    [2] Kirchman D L. Growth rates of microbes in the oceans[J]. Annual Review of Marine Science, 2016, 8: 285−309. doi: 10.1146/annurev-marine-122414-033938
    [3] Huang Bangqin, Xiang Weiguo, Zeng Xiangbo, et al. Phytoplankton growth and microzooplankton grazing in a subtropical coastal upwelling system in the Taiwan Strait[J]. Continental Shelf Research, 2011, 31(6): S48−S56. doi: 10.1016/j.csr.2011.02.005
    [4] Strom S L, Fredrickson K A. Intense stratification leads to phytoplankton nutrient limitation and reduced microzooplankton grazing in the southeastern Bering Sea[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2008, 55(16/17): 1761−1774.
    [5] Sun Jun, Feng Yuanyuan, Zhang Yaohong, et al. Fast microzooplankton grazing on fast-growing, low-biomass phytoplankton: a case study in spring in Chesapeake Bay, Delaware Inland Bays and Delaware Bay[J]. Hydrobiologia, 2007, 589(1): 127−139. doi: 10.1007/s10750-007-0730-6
    [6] Froneman P W, McQuaid C D. Preliminary investigation of the ecological role of microzooplankton in the Kariega Estuary, South Africa[J]. Estuarine, Coastal and Shelf Science, 1997, 45(5): 689−695. doi: 10.1006/ecss.1996.0225
    [7] Strom S L, Brainard M A, Holmes J L, et al. Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific waters[J]. Marine Biology, 2001, 138(2): 355−368. doi: 10.1007/s002270000461
    [8] Zhou L, Tan Y, Huang L, et al. Seasonal and size-dependent variations in the phytoplankton growth and microzooplankton grazing in the southern South China Sea under the influence of the East Asian monsoon[J]. Biogeosciences, 2015, 12(22): 6809−6822. doi: 10.5194/bg-12-6809-2015
    [9] Lie A A Y, Wong C K. Selectivity and grazing impact of microzooplankton on phytoplankton in two subtropical semi-enclosed bays with different chlorophyll concentrations[J]. Journal of Experimental Marine Biology and Ecology, 2010, 390(2): 149−159. doi: 10.1016/j.jembe.2010.05.001
    [10] Liu Xiangjiang, Tang C H, Wong C K. Microzooplankton grazing and selective feeding during bloom periods in the Tolo Harbour area as revealed by HPLC pigment analysis[J]. Journal of Sea Research, 2014, 90: 83−94. doi: 10.1016/j.seares.2014.02.017
    [11] Lehrter J C, Pennock J R, McManus G B. Microzooplankton grazing and nitrogen excretion across a surface estuarine-coastal interface[J]. Estuaries, 1999, 22(1): 113−125. doi: 10.2307/1352932
    [12] Sun Jun, Feng Yuanyuan, Zhou Feng, et al. Top-down control of spring surface phytoplankton blooms by microzooplankton in the Central Yellow Sea, China[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2013, 97: 51−60. doi: 10.1016/j.dsr2.2013.05.005
    [13] Grattepanche J D, Vincent D, Breton E, et al. Microzooplankton herbivory during the diatom—Phaeocystis spring succession in the eastern English Channel[J]. Journal of Experimental Marine Biology and Ecology, 2011, 404(1/2): 87−97.
    [14] Tsuda A, Saito H, Machida R J, et al. Meso- and microzooplankton responses to an in situ iron fertilization experiment (SEEDS II) in the northwest subarctic Pacific[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2009, 56(26): 2767−2778. doi: 10.1016/j.dsr2.2009.06.004
    [15] Fileman E S, Leakey R J G. Microzooplankton dynamics during the development of the spring bloom in the north-east Atlantic[J]. Journal of the Marine Biological Association of the United Kingdom, 2005, 85(4): 741−753. doi: 10.1017/S0025315405011653
    [16] George J A, Lonsdale D J, Merlo L R, et al. The interactive roles of temperature, nutrients, and zooplankton grazing in controlling the winter-spring phytoplankton bloom in a temperate, coastal ecosystem, Long Island Sound[J]. Limnology and Oceanography, 2015, 60(1): 110−126. doi: 10.1002/lno.10020
    [17] Behrenfeld M J. Abandoning Sverdrup’s critical depth hypothesis on phytoplankton blooms[J]. Ecology, 2010, 91(4): 977−989. doi: 10.1890/09-1207.1
    [18] Lucas L V, Koseff J R, Monismith S G, et al. Processes governing phytoplankton blooms in estuaries. II: the role of horizontal transport[J]. Marine Ecology Progress Series, 1999, 187: 17−30. doi: 10.3354/meps187017
    [19] 张景平, 黄小平, 江志坚, 等. 2006−2007年珠江口富营养化水平的季节性变化及其与环境因子的关系[J]. 海洋学报, 2009, 31(3): 113−120.

    Zhang Jingping, Huang Xiaoping, Jiang Zhijian, et al. Seasonal variations of eutrophication and the relationship with environmental factors in the Zhujiang Estuary in 2006−2007[J]. Haiyang Xuebao, 2009, 31(3): 113−120.
    [20] 曾丹娜, 牛丽霞, 陶伟, 等. 夏季珠江口水域营养盐分布特征及其富营养化评价[J]. 广东海洋大学学报, 2020, 40(3): 73−82. doi: 10.3969/j.issn.1673-9159.2020.03.010

    Zeng Danna, Niu Lixia, Tao Wei, et al. Nutrient dynamics in Pearl River Estuary and their eutrophication evaluation[J]. Journal of Guangdong Ocean University, 2020, 40(3): 73−82. doi: 10.3969/j.issn.1673-9159.2020.03.010
    [21] 苏芯莹, 钟瑜, 李尧, 等. 珠江口典型海岛周边水域浮游植物分布特征及其影响因素[J]. 热带海洋学报, 2020, 39(5): 30−42.

    Su Xinying, Zhong Yu, Li Yao, et al. Distribution characteristics and influencing factors of phytoplankton in waters around typical islands in the Pearl River Estuary[J]. Journal of Tropical Oceanography, 2020, 39(5): 30−42.
    [22] Yin Kedong. Influence of monsoons and oceanographic processes on red tides in Hong Kong waters[J]. Marine Ecology Progress Series, 2003, 262: 27−41. doi: 10.3354/meps262027
    [23] 林凤翱, 关春江, 卢兴旺. 近年来全国赤潮监控工作的成效以及存在问题与建议[J]. 海洋环境科学, 2010, 29(1): 148−151. doi: 10.3969/j.issn.1007-6336.2010.01.033

    Lin Feng’ao, Guan Chunjiang, Lu Xingwang. Effects of red tide events monitoring, existence questions and suggestions in coastal areas in recent years in China[J]. Marine Environmental Science, 2010, 29(1): 148−151. doi: 10.3969/j.issn.1007-6336.2010.01.033
    [24] 田媛, 李涛, 胡思敏, 等. 广东省沿岸海域藻华发生的时空特征[J]. 海洋环境科学, 2020, 39(1): 1−8. doi: 10.12111/j.mes20200101

    Tian Yuan, Li Tao, Hu Simin, et al. Temporal and spatial characteristics of harmful algal blooms in Guangdong coastal area[J]. Marine Environmental Science, 2020, 39(1): 1−8. doi: 10.12111/j.mes20200101
    [25] Yin Kedong, Song Xiuxian, Sun Jun, et al. Potential P limitation leads to excess N in the Pearl River Estuarine coastal plume[J]. Continental Shelf Research, 2004, 24(16): 1895−1907. doi: 10.1016/j.csr.2004.06.014
    [26] 柯志新, 谭烨辉, 黄良民, 等. 2009年秋季旋沟藻赤潮爆发期间珠江口表层水体的环境特征[J]. 海洋环境科学, 2012, 31(5): 635−638.

    Ke Zhixin, Tan Yehui, Huang Liangmin, et al. Environmental characteristics in surface water of the Zhujiang Estuary during the period of Cochlodinium blooms in fall, 2009[J]. Marine Environmental Science, 2012, 31(5): 635−638.
    [27] Lu Zhongming, Gan Jianping. Controls of seasonal variability of phytoplankton blooms in the Pearl River Estuary[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 117: 86−96. doi: 10.1016/j.dsr2.2013.12.011
    [28] Landry M R, Hassett R P. Estimating the grazing impact of marine micro-zooplankton[J]. Marine Biology, 1982, 67(3): 283−288. doi: 10.1007/BF00397668
    [29] Chen B, Zheng L, Huang B, et al. Seasonal and spatial comparisons of phytoplankton growth and mortality rates due to microzooplankton grazing in the northern South China Sea[J]. Biogeosciences, 2013, 10(4): 2775−2785. doi: 10.5194/bg-10-2775-2013
    [30] Knap A H, Michaels A, Close A R, et al. Protocols for the joint global ocean flux study (JGOFS) core measurements[R]. Paris: UNESCO-IOC, 1994: 19.
    [31] 孙军, 宁修仁. 海洋浮游植物群落的比生长率[J]. 地球科学进展, 2005, 20(9): 939−945. doi: 10.3321/j.issn:1001-8166.2005.09.003

    Sun Jun, Ning Xiuren. Marine phytoplankton specific growth rate[J]. Advances in Earth Science, 2005, 20(9): 939−945. doi: 10.3321/j.issn:1001-8166.2005.09.003
    [32] Boss E, Behrenfeld M. In situ evaluation of the initiation of the North Atlantic phytoplankton bloom[J]. Geophysical Research Letters, 2010, 37(18): L18603.
    [33] Johansson M, Gorokhova E, Larsson U. Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea proper[J]. Journal of Plankton Research, 2004, 26(1): 67−80. doi: 10.1093/plankt/fbg115
    [34] Marañón E. Cell size as a key determinant of phytoplankton metabolism and community structure[J]. Annual Review of Marine Science, 2015, 7: 241−264. doi: 10.1146/annurev-marine-010814-015955
    [35] 张亚锋, 王旭涛, 殷克东. 南海台风引发藻华的生物机制[J]. 生态学报, 2018, 38(16): 5667−5678.

    Zhang Yafeng, Wang Xutao, Yin Kedong. Biological mechanisms of typhoon-induced blooms in the South China Sea[J]. Acta Ecologica Sinica, 2018, 38(16): 5667−5678.
    [36] Irigoien X, Flynn K J, Harris R P. Phytoplankton blooms: a ‘loophole’ in microzooplankton grazing impact?[J]. Journal of Plankton Research, 2005, 27(4): 313−321. doi: 10.1093/plankt/fbi011
    [37] Calbet A, Landry M R. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems[J]. Limnology and Oceanography, 2004, 49(1): 51−57. doi: 10.4319/lo.2004.49.1.0051
    [38] Schmoker C, Hernández-León S, Calbet A. Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions[J]. Journal of Plankton Research, 2013, 35(4): 691−706. doi: 10.1093/plankt/fbt023
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  24
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-15
  • 修回日期:  2022-03-08

目录

    /

    返回文章
    返回