留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

植被对波浪作用下床面切应力影响的数值模拟分析

葛昭佩 唐军 赵楚嫣

葛昭佩,唐军,赵楚嫣. 植被对波浪作用下床面切应力影响的数值模拟分析[J]. 海洋学报,2022,44(11):111–120 doi: 10.12284/hyxb2022125
引用本文: 葛昭佩,唐军,赵楚嫣. 植被对波浪作用下床面切应力影响的数值模拟分析[J]. 海洋学报,2022,44(11):111–120 doi: 10.12284/hyxb2022125
Ge Zhaopei,Tang Jun,Zhao Chuyan. Numerical study on influence of vegetation on bed shear stress under coastal waves[J]. Haiyang Xuebao,2022, 44(11):111–120 doi: 10.12284/hyxb2022125
Citation: Ge Zhaopei,Tang Jun,Zhao Chuyan. Numerical study on influence of vegetation on bed shear stress under coastal waves[J]. Haiyang Xuebao,2022, 44(11):111–120 doi: 10.12284/hyxb2022125

植被对波浪作用下床面切应力影响的数值模拟分析

doi: 10.12284/hyxb2022125
基金项目: 国家重点研发计划(2017YFC1404200)。
详细信息
    作者简介:

    葛昭佩(1996-),男,河南省商丘市人,主要从事海岸环境水动力研究。E-mail: 1559096070@qq.com

    通讯作者:

    唐军(1976-),男,宁夏回族自治区中宁县人,主要从事近岸环境水动力研究。E-mail:jtang@dlut.edu.cn

  • 中图分类号: P731.22

Numerical study on influence of vegetation on bed shear stress under coastal waves

  • 摘要: 本文基于OpenFOAM建立三维波浪数值水槽,模拟计算植被水域波浪作用下的床面切应力,分析了入射波高、植被密度、植被淹没高度、水流对植被水域波浪作用下床面切应力的影响。结果表明:纯波时,由于植被的阻水作用,植被水域床面切应力沿程衰减,其衰减程度与入射波高、植被密度及植被淹没高度呈现正相关;与纯波时相比,在波浪和同向流共同作用下正向床面切应力幅值增大,负向床面切应力幅值减小;弱水流对植被水域床面切应力的大小及分布无明显影响;强水流时,床面切应力在植被水域先增大后逐渐减小并在植被水域后显著降低。
  • 图  1  考虑植被外形扰动的模拟结果

    Fig.  1  Simulation results considering the disturbance of vegetation shape

    图  2  植被水域波面演化

    Fig.  2  Free surface evolution along the vegetation zones

    图  3  植被水域流速衰减验证

    Fig.  3  Verification of velocity attenuation in vegetation zones

    图  4  理论值与模拟值对比(工况1)

    Fig.  4  Comparison between theoretical and simulated values (case 1)

    图  5  理论值与模拟值对比(工况2)

    Fig.  5  Comparison between theoretical and simulated values (case 2)

    图  6  床面切应力对比(工况3)

    Fig.  6  Comparison of bed shear stress (case 3)

    图  7  波面及床面切应力(工况1)

    Fig.  7  Free surface and bed shear stress (case 1)

    图  8  近底流速剖面(工况1)

    Fig.  8  The near-bottom velocity profile (case 1)

    图  9  淹没植被沿水深速度剖面

    Fig.  9  Longitudinal velocity profile of submerged vegetation

    图  10  不同流速下床面切应力变化

    Fig.  10  Variation of bed shear stress under different current velocity

    图  11  不同工况下植被水域最大床面切应力分布

    Fig.  11  Distribution of maximum bed shear stress in vegetation zones under different conditions

    图  12  不同流速下最大床面切应力衰减率

    Fig.  12  Decay rate of maximum bed shear stress at different current velocities

    表  1  经验系数取值

    Tab.  1  Default values for the closure coefficient

    经验系数${C_\mu }$${C_{\varepsilon 1}}$${C_{\varepsilon 2}}$${\sigma _\varepsilon }$${\lambda _2}$${\sigma _t}$
    0.091.441.921.30.050.85
    下载: 导出CSV

    表  2  植被及波浪参数

    Tab.  2  Parameters of vegetation and waves

    工况波高/
    m
    周期/
    s
    水深/
    m
    流速/
    (m·s−1
    植被
    杆径/m
    植被
    高度/m
    植被水域
    长度/m
    植被密度/
    (stem·m−2)
    10.041.50.300.0050.65560
    20.041.50.30.1860.0050.65560
    下载: 导出CSV

    表  3  验证工况参数

    Tab.  3  Parameters of verification conditions

    工况波高/m周期/s水深/m波浪水质点振幅/m边界层雷诺数
    10.051.50.40.0222 103.68
    20.11.50.40.0458 414.72
    30.1520.540.09226 769.86
    下载: 导出CSV

    表  4  模拟工况参数

    Tab.  4  Parameters of numerical simulation conditions

    工况波高/m周期/s水深/m流速/
    (m·s−1)
    植被高
    度/m
    植被水域
    长度/m
    植被密度/
    (stem·m−2)
    10.051.50.400.65560
    20.11.50.400.65560
    30.151.50.400.65560
    40.11.50.400.65149
    50.11.50.400.652 228
    60.11.50.400.15560
    70.11.50.400.25560
    80.11.50.400.35560
    90.051.50.40.010.65560
    100.051.50.40.020.65560
    110.051.50.40.040.65560
    120.051.50.40.0630.65560
    130.051.50.40.080.65560
    140.051.50.40.1030.65560
    150.051.50.40.1550.65560
    160.051.50.40.20.65560
    170.11.50.40.020.65560
    180.11.50.40.0620.65560
    190.11.50.40.1030.65560
    200.11.50.40.1550.65560
    210.11.50.40.20.65560
    220.11.50.40.30.65560
    下载: 导出CSV
  • [1] Jonsson I G. Wave boundary layers and friction factors[C]//Proceedings of the 10th International Conference on Coastal Engineering. Tokyo: ASCE, 1966: 127−148.
    [2] 孔令双, 曹祖德, 焦桂英, 等. 波、流共存时的床面剪切力和泥沙运动[J]. 水动力学研究与进展(A辑), 2003, 18(1): 93−97.

    Kong Lingshuang, Cao Zude, Jiao Guiying, et al. The bottom shear stress and sediment movement for a wave-current coexisting system[J]. Journal of Hydrodynamics Series A, 2003, 18(1): 93−97.
    [3] 蔡翠苏. 波浪作用下底摩阻系数和泥沙起动实验研究[D]. 南京: 河海大学, 2007.

    Cai Cuisu. Laboratory investigation on wave friction factor and sediment initial motion under water waves[D]. Nanjing: Hohai University, 2007.
    [4] 齐富康, 边昌伟, 徐景平. 渤海海峡沉积物输运的参数化计算[J]. 海洋学报, 2020, 42(3): 83−96.

    Qi Fukang, Bian Changwei, Xu Jingping. Parameterization of sediment transport in the Bohai Strait[J]. Haiyang Xuebao, 2020, 42(3): 83−96.
    [5] Lin Pengzhi, Zhang Wenyu. Numerical simulation of wave-induced laminar boundary layers[J]. Coastal Engineering, 2008, 55(5): 400−408. doi: 10.1016/j.coastaleng.2007.12.005
    [6] 滕涌, 杨永增, 芦静, 等. 波浪对泥沙作用的数值研究及在渤海区域的检验[J]. 海洋学报, 2012, 34(5): 174−182.

    Teng Yong, Yang Yongzeng, Lu Jing, et al. A numerical study of the wave effect on sediment transport and test in the Bohai Sea[J]. Haiyang Xuebao, 2012, 34(5): 174−182.
    [7] Larsen B E, Fuhrman D R. Full-scale CFD simulation of tsunamis. Part 1: model validation and run-up[J]. Coastal Engineering, 2019, 151: 22−41. doi: 10.1016/j.coastaleng.2019.04.012
    [8] Larsen B E, Fuhrman D R. Full-scale CFD simulation of tsunamis. Part 2: boundary layers and bed shear stresses[J]. Coastal Engineering, 2019, 151: 42−57. doi: 10.1016/j.coastaleng.2019.04.011
    [9] Wang X Y, Xie W M, Zhang D, et al. Wave and vegetation effects on flow and suspended sediment characteristics: a flume study[J]. Estuarine, Coastal and Shelf Science, 2016, 182: 1−11. doi: 10.1016/j.ecss.2016.09.009
    [10] Reidenbach M A, Thomas E L. Influence of the Seagrass, Zostera marina, on wave attenuation and bed shear stress within a shallow coastal bay[J]. Frontiers in Marine Science, 2018, 5: 397. doi: 10.3389/fmars.2018.00397
    [11] 陈家贵, 沈小雄. 波浪作用下柔性植物对最大床面剪切力的影响研究[J]. 中国水运(下半月), 2016, 16(4): 278−280.

    Chen Jiagui, Shen Xiaoxiong. Study on the effect of flexible plants on the maximum bed shear stress under waves[J]. China Water Transport, 2016, 16(4): 278−280.
    [12] 李勰, 陈杰, 蒋昌波, 等. 规则波下刚性植物根茎对边界层最大剪切力特性影响研究[J]. 海洋学报, 2021, 43(12): 102−110.

    Li Xie, Chen Jie, Jiang Changbo, et al. Study on the influence of rigid plant roots and stems on the maximum shearing characteristics of boundary layer under regular wave[J]. Haiyang Xuebao, 2021, 43(12): 102−110.
    [13] Luhar M, Coutu S, Infantes E, et al. Wave-induced velocities inside a model seagrass bed[J]. Journal of Geophysical Research: Oceans, 2010, 115(C12): C12005. doi: 10.1029/2010JC006345
    [14] Hansen J C R, Reidenbach M A. Wave and tidally driven flows in eelgrass beds and their effect on sediment suspension[J]. Marine Ecology Progress Series, 2012, 448: 271−287. doi: 10.3354/meps09225
    [15] Etminan V, Ghisalberti M, Lowe R J. Predicting bed shear stresses in vegetated channels[J]. Water Resources Research, 2018, 54(11): 9187−9206. doi: 10.1029/2018WR022811
    [16] Jacobsen N G, Fuhrman D R, Fredsøe J. A wave generation toolbox for the open-source CFD library: OpenFoam®[J]. International Journal for Numerical Methods in Fluids, 2012, 70(9): 1073−1088. doi: 10.1002/fld.2726
    [17] Maza M, Lara J L, Losada I J. Tsunami wave interaction with mangrove forests: a 3-D numerical approach[J]. Coastal Engineering, 2015, 98: 33−54. doi: 10.1016/j.coastaleng.2015.01.002
    [18] Hu Z, Suzuki T, Zitman T, et al. Laboratory study on wave dissipation by vegetation in combined current-wave flow[J]. Coastal Engineering, 2014, 88: 131−142. doi: 10.1016/j.coastaleng.2014.02.009
    [19] Devolder B, Rauwoens P, Troch P. Application of a buoyancy-modified k-ω SST turbulence model to simulate wave run-up around a monopile subjected to regular waves using OpenFOAM®[J]. Coastal Engineering, 2017, 125: 81−94. doi: 10.1016/j.coastaleng.2017.04.004
    [20] Larsen B E, Fuhrman D R. On the over-production of turbulence beneath surface waves in Reynolds-averaged Navier-Stokes models[J]. Journal of Fluid Mechanics, 2018, 853: 419−460. doi: 10.1017/jfm.2018.577
    [21] Hiraoka H, Ohashi M. A (k–ε) turbulence closure model for plant canopy flows[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10/11): 2139−2149.
    [22] Dalrymple R A, Kirby J T, Hwang P A. Wave diffraction due to areas of energy dissipation[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1984, 110(1): 67−79. doi: 10.1061/(ASCE)0733-950X(1984)110:1(67)
    [23] Etminan V, Lowe R J, Ghisalberti M. Canopy resistance on oscillatory flows[J]. Coastal Engineering, 2019, 152: 103502. doi: 10.1016/j.coastaleng.2019.04.014
    [24] Wang Y X, Yin Z G, Liu Y. Numerical investigation of solitary wave attenuation and resistance induced by rigid vegetation based on a 3-D RANS model[J]. Advances in Water Resources, 2020, 146: 103755. doi: 10.1016/j.advwatres.2020.103755
    [25] 王倚彤. 植被水域同向水流影响下规则波传播模拟研究[D]. 大连: 大连理工大学, 2019.

    Wang Yitong. Simulation study of regular wave propagation under the influence of coplanar currents in vegetation zones[D]. Dalian: Dalian University of Technology, 2019.
    [26] 徐华, 夏云峰, 蔡喆伟, 等. 复杂水动力环境下床面切应力量测与研究初探[C]//第十八届中国海洋(岸)工程学术讨论会. 北京: 海洋出版社, 2017: 260-266.

    Xu Hua, Xia Yunfeng, Cai Zhewei, et al. Measurement and study of bed shear stress under complex hydrodynamic environment[C]// The 18th China Offshore Engineering Symposium. Beijing: China Ocean Press, 2017: 260−266.
    [27] Lamb H. Hydrodynamics[M]. Cambridge: Cambridge University Press, 1932.
    [28] Schaffer H A, Svendsen I A. Boundary layer flow under skew waves[J]. Int. Hydrodyn. and Hydraulic Engrg. 1986: 13−23.
    [29] Liu D, Diplas P, Fairbanks J D, et al. An experimental study of flow through rigid vegetation[J]. Journal of Geophysical Research Earth Surface, 2008, 113(F4): F04015.
    [30] 陈明, 刘曙光, 娄厦, 等. 刚性植物对波高衰减和水流结构的影响[J]. 水利水电科技进展, 2018, 38(6): 32−37.

    Chen Ming, Liu Shuguang, Lou Sha, et al. Impact of rigid vegetation on wave attenuation and flow structure[J]. Advances in Science and Technology of Water Resources, 2018, 38(6): 32−37.
    [31] Nepf H M. Hydrodynamics of vegetated channels[J]. Journal of Hydraulic Research, 2012, 50(3): 262−279. doi: 10.1080/00221686.2012.696559
    [32] Tolman H L. An evaluation of expressions for wave energy dissipation due to bottom friction in the presence of currents[J]. Coastal Engineering, 1992, 16(2): 165−179. doi: 10.1016/0378-3839(92)90035-S
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  390
  • HTML全文浏览量:  103
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-11
  • 修回日期:  2022-05-20
  • 网络出版日期:  2022-10-08
  • 刊出日期:  2022-11-03

目录

    /

    返回文章
    返回