留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

河口地貌对潮汐不对称性影响的数值模拟研究

周曾 陈璐莹 蒋春海 储鏖 IanTownend 张长宽

周曾,陈璐莹,蒋春海,等. 河口地貌对潮汐不对称性影响的数值模拟研究[J]. 海洋学报,2022,44(7):72–81 doi: 10.12284/hyxb2022120
引用本文: 周曾,陈璐莹,蒋春海,等. 河口地貌对潮汐不对称性影响的数值模拟研究[J]. 海洋学报,2022,44(7):72–81 doi: 10.12284/hyxb2022120
Zhou Zeng,Chen Luying,Jiang Chunhai, et al. A numerical simulation study on the response of tidal asymmetry to estuarine morphologies[J]. Haiyang Xuebao,2022, 44(7):72–81 doi: 10.12284/hyxb2022120
Citation: Zhou Zeng,Chen Luying,Jiang Chunhai, et al. A numerical simulation study on the response of tidal asymmetry to estuarine morphologies[J]. Haiyang Xuebao,2022, 44(7):72–81 doi: 10.12284/hyxb2022120

河口地貌对潮汐不对称性影响的数值模拟研究

doi: 10.12284/hyxb2022120
基金项目: 国家自然科学基金面上项目(41976156);江苏省优秀青年科学基金(BK20200077)。
详细信息
    作者简介:

    周曾(1986-),男,江苏省句容市人,教授,主要从事河口海岸动力地貌学、潮滩系统生物动力过程等方面研究。E-mail:zeng.zhou@hhu.edu.cn

    通讯作者:

    陈璐莹,助理工程师,主要从事河口地貌数值模拟研究。E-mail: chenluying@sidri.com

  • 中图分类号: TV122

A numerical simulation study on the response of tidal asymmetry to estuarine morphologies

  • 摘要: 河口地貌形态对潮汐不对称性的产生和发展有着至关重要的作用。根据英国Humber河口数据建立了概化模型,研究了在同一纳潮量情况下,主槽断面形态、平面形态和河口收缩率对河口潮汐不对称性的影响。结果表明,较深的主槽能使相位差峰值出现较晚且峰值更大,从而影响局部区域的涨潮流强弱,主槽越浅,最大落潮流速越小,落潮所需历时越长,河口更倾向于涨潮主导,窄潮滩倾向于涨潮主导型,宽潮滩倾向于落潮主导型;平面形态沿程收缩且长度较长的河口涨潮主导型最强,此外,河口宽度沿程缩窄会加大主槽的余流流速,减小潮滩的余流流速;随着河口平面收缩率的增强,主槽的余流流速减小,潮滩余流流速增大,潮滩更倾向于涨潮主导。本文进一步丰富了河口地形地貌变化对潮汐不对称性影响的认识,可为河口区工程建设和管理维护提供科学依据。
  • 图  1  基于Humber河口数据的理论模型示意图[41]

    黑色点线由上到下分别为高水位线、平均水位线以及低水位线

    Fig.  1  Schematic diagram of the theoretical model based on the data of Humber Estuary[41]

    The black dot lines from top to bottom. respectively show the high water level, the mean water level and the low water level

    图  2  不同断面形态示意图

    Fig.  2  Diagram of different cross sections

    图  3  不同潮滩宽度以及不同主槽深度的河口断面平均流速随时间的变化过程

    Fig.  3  The change of cross-sectionally averaged along-channel velocities in estuaries with different tidal width and channel depth

    图  4  不同潮滩宽度以及不同主槽深度的河口在不同水位下的断面流速

    Fig.  4  Cross-sectional distribution of the along-channel depth averaged velocities in estuaries with different tidal width and channel depth under different tidal levels

    图  5  不同断面形态的河口沿程相位差变化

    仅显示相位差变化剧烈的前60 km,河口总长为140 km

    Fig.  5  The change of relative tidal phase along the channel in estuaries with different cross sections

    Only shows 60 km from the mouth where the relative tidal phase changes rapidly and the total length is 140 km

    图  6  不同平面形态的相位差$2{\theta }_{\mathrm{M}_2}-{\theta }_{\mathrm{M}_4}$沿程变化

    Fig.  6  The change of relative tidal phase along the channel in estuaries with different plan forms

    图  7  不同平面形态河口的余流场

    Fig.  7  Residual currents in estuaries with different plan forms

    图  8  不同平面收缩率河口的相位差$2{\theta }_{\mathrm{M}_2}-{\theta }_{\mathrm{M}_4}$沿程变化

    Fig.  8  The change of relative tidal phase along the channel in estuaries with different convergence

    图  9  不同收缩率河口的余流场

    Fig.  9  Residual currents in estuaries with different convergence

    表  1  潮汐不对称性类型

    Tab.  1  The type of tidal asymmetry

    类型垂直向水平向
    涨潮主导型0°<$2\theta_{{\rm{M}}_2} - \theta_{{\rm{M}}_4}$<180°−90°<$2\phi_{{\rm{M}}_2} - \phi_{{\rm{M}}_4}$<90°
    落潮主导型180°(−180°)<$2\theta_{{\rm{M}}_2} - \theta_{{\rm{M}}_4}$<360°(0°)90°<$2\phi_{{\rm{M}}_2} - \phi_{{\rm{M}}_4}$<270°
    平衡状态$2\theta_{{\rm{M}}_2} - \theta_{{\rm{M}}_4}$=0°或180°$2\phi_{{\rm{M}}_2} - \phi_{{\rm{M}}_4}$=90°或270°
    下载: 导出CSV

    表  2  不同断面形态模型汇总

    Tab.  2  The summary of different cross sections

    序号名称高水位时潮滩
    宽度/km
    低水位时潮滩
    宽度/km
    口门处主槽
    深度/m
    a理论模型1710.516.5
    b简化模型1610.512.3
    c宽潮滩+基准深度18.5812.3
    宽潮滩+较深主槽18.5817.7
    宽潮滩+较浅主槽18.587.7
    d窄潮滩+基准深度1412.512.3
    窄潮滩+较深主槽1412.517.7
    窄潮滩+较浅主槽1412.57.7
    下载: 导出CSV

    表  3  不同平面形态模型汇总

    Tab.  3  The summary of different plan forms

    序号平面形态长度/km纳潮量/m3收缩长度/km备注
    a指数型收缩(强)801.47×10918.34种平面形态口门处的
    断面保持相同
    b线性变化361.47×109
    c矩形18.61.47×109
    d指数型收缩(弱)80 60
      注:− 代表不包含数据。
    下载: 导出CSV

    表  4  不同断面形态河口的沿程相位差均值

    Tab.  4  The along-channel averaged relative tidal phases of estuaries with different cross sections

    序号断面形态平均沿程相位差
    $2{\theta }_{\mathrm{M}_2}-{\theta }_{\mathrm{M}_4}$/(°)
    潮滩宽度主槽深度
    a基准宽度基准深度52.55
    b较宽基准深度50.10
    c较宽较深45.51
    d较宽较浅56.10
    e较窄基准深度58.76
    f较窄较深55.93
    g较窄较浅60.65
    下载: 导出CSV

    表  5  不同平面形态的沿程相位差均值

    Tab.  5  The along-channel averaged relative tidal phases of estuaries with different plan forms

    河口平面形态平均沿程相位差$2{\theta }_{\mathrm{M}_2}-{\theta }_{\mathrm{M}_4}$/(°)
    指数型收缩平面32.73
    线性变化平面13.37
    矩形平面6.68
    弱收缩平面(收缩长度60 km)21.40
    强收缩平面(收缩长度18.3 km)32.73
    下载: 导出CSV
  • [1] 王彪, 朱建荣, 李路. 长江河口涨落潮不对称性动力成因分析[J]. 海洋学报, 2011, 33(3): 19−27.

    Wang Biao, Zhu Jianrong, Li Lu. A study on the dynamics of the asymmetry between flood and ebb in the Changjiang River Estuary[J]. Haiyang Xuebao, 2011, 33(3): 19−27.
    [2] 侯庆志, 陆永军, 王建, 等. 河口与海岸滩涂动力地貌过程研究进展[J]. 水科学进展, 2012, 23(2): 286−294.

    Hou Qingzhi, Lu Yongjun, Wang Jian, et al. Advances in morphodynamics of estuarine and coastal mudflats[J]. Advances in Water Science, 2012, 23(2): 286−294.
    [3] 乔立新, 张国安, 何青, 等. 长江分汊河口涨、落潮悬沙不对称特征及季节性差异[J]. 海洋学报, 2020, 42(3): 107−117.

    Qiao Lixin, Zhang Guoan, He Qing, et al. Tidal and seasonal asymmetry of suspended sediment concentration in branched channels of the Changjiang River Estuary[J]. Haiyang Xuebao, 2020, 42(3): 107−117.
    [4] Du Jiabi, Shen Jian, Zhang Yinglong, et al. Tidal response to sea-level rise in different types of estuaries: the importance of length, bathymetry, and geometry[J]. Geophysical Research Letters, 2018, 45(1): 227−235. doi: 10.1002/2017GL075963
    [5] Jewell S A, Walker D J, Fortunato A B. Tidal asymmetry in a coastal lagoon subject to a mixed tidal regime[J]. Geomorphology, 2012, 138(1): 171−180. doi: 10.1016/j.geomorph.2011.08.032
    [6] Aubrey D G, Speer P E. A study of non-linear tidal propagation in shallow inlet/estuarine systems Part I: Observations[J]. Estuarine, Coastal and Shelf Science, 1985, 21(2): 185−205. doi: 10.1016/0272-7714(85)90096-4
    [7] 李谊纯. 潮流不对称与推移质泥沙长期净输运[J]. 泥沙研究, 2013(5): 21−26.

    Li Yichun. On relationship between tidal current asymmetry and long-term bed load net transport[J]. Journal of Sediment Research, 2013(5): 21−26.
    [8] 林国尧, 龚文平. 海南岛莺歌海近岸的潮汐不对称与潮致余流研究[J]. 海洋学报, 2017, 39(7): 36−42.

    Lin Guoyao, Gong Wenping. Tidal asymmetry and tide-induced residual currents in the Yinggehai coast, Hainan Island[J]. Haiyang Xuebao, 2017, 39(7): 36−42.
    [9] Latteux B. Techniques for long-term morphological simulation under tidal action[J]. Marine Geology, 1995, 126(1/4): 129−141.
    [10] 杨洋, 陈沈良, 徐丛亮. 黄河口滨海区冲淤演变与潮流不对称[J]. 海洋学报, 2021, 43(6): 13−25.

    Yang Yang, Chen Shenliang, Qu Congliang. Morphodynamics and tidal flow asymmetry of the Huanghe River Estuary[J]. Haiyang Xuebao, 2021, 43(6): 13−25.
    [11] Friedrichs C T, Aubrey D G. Non-linear tidal distortion in shallow well-mixed estuaries: a synthesis[J]. Estuarine, Coastal and Shelf Science, 1988, 27(5): 521−545. doi: 10.1016/0272-7714(88)90082-0
    [12] Wang Zhengbing, Jeuken C, De Vriend H J. Tidal asymmetry and residual sediment transport in estuaries[J]. Delft Hydraulics report Z2749, 1999.
    [13] 尹倩瑜, 龚政, 李欢, 等. 长江口北支河段潮汐不对称性分析[J]. 人民长江, 2013, 44(21): 81−84. doi: 10.3969/j.issn.1001-4179.2013.21.021

    Yin Qianyu, Gong Zheng, Li Huan, et al. Analysis on tidal asymmetry in north branch of Yangtze River Estuary[J]. Yangtze River, 2013, 44(21): 81−84. doi: 10.3969/j.issn.1001-4179.2013.21.021
    [14] 季荣耀, 陆永军, 詹小磊, 等. 伶仃洋茅洲河口动力地貌演变过程[J]. 水科学进展, 2019, 30(6): 781−788.

    Ji Rongyao, Lu Yongjun, Zhan Xiaolei, et al. Study on the morphodynamic evolution processes in the Maozhou Estuary of the Lingding Bay[J]. Advances in Water Science, 2019, 30(6): 781−788.
    [15] Zhou Zeng, Coco G, Townend I, et al. On the stability relationships between tidal asymmetry and morphologies of tidal basins and estuaries[J]. Earth Surface Processes and Landforms, 2018, 43(9): 1943−1959. doi: 10.1002/esp.4366
    [16] Zhou Zeng, Coco G, Townend I, et al. Is “Morphodynamic Equilibrium” an oxymoron?[J]. Earth-Science Reviews, 2017, 165: 257−267. doi: 10.1016/j.earscirev.2016.12.002
    [17] Gao Guandong, Wang Xiaohua, Bao Xianwen. Land reclamation and its impact on tidal dynamics in Jiaozhou Bay, Qingdao, China[J]. Estuarine, Coastal and Shelf Science, 2014, 151: 285−294. doi: 10.1016/j.ecss.2014.07.017
    [18] 方彤瑶, 李莉. 滩涂围垦对水动力环境的影响[C]//第十七届中国海洋(岸)工程学术讨论会论文集(上). 北京: 海洋出版社, 2015.

    Fang Tongyao, Li Li. Influence of tidal flat reclamation on hydrodynamic environment[C]//Proceedings of the 17th China Ocean (Shore) Engineering Symposium. Beijing: China Ocean Press, 2015.
    [19] Gong Wenping, Schuttelaars H, Zhang Heng. Tidal asymmetry in a funnel-shaped estuary with mixed semidiurnal tides[J]. Ocean Dynamics, 2016, 66(5): 637−658. doi: 10.1007/s10236-016-0943-1
    [20] 操进浪. 杭州湾海域岸线变化对其水动力过程影响的数值研究[D]. 杭州: 浙江大学, 2018.

    Cao Jinlang. Numerical simulation on impacts of coastlinechanges on hydrodynamics in Hangzhou bay[D]. Hangzhou: Zhejiang University, 2018.
    [21] Pein J U, Stanev E V, Zhang Y J. The tidal asymmetries and residual flows in Ems Estuary[J]. Ocean Dynamics, 2014, 64(12): 1719−1741. doi: 10.1007/s10236-014-0772-z
    [22] 沈倩颖, 季小梅, 张蔚, 等. 河口挡潮闸对三角洲潮汐不对称时空变化的影响[J]. 热带海洋学报, 2021, 40(5): 1−9. doi: 10.11978/2020127

    Shen Qianying, Ji Xiaomei, Zhang Wei, et al. Impact of estuarine storm surge barriers on spatiotemporal variation of tidal asymmetry in a delta[J]. Journal of Tropical Oceanography, 2021, 40(5): 1−9. doi: 10.11978/2020127
    [23] Montaño-Ley Y, Peraza-Vizcarra R, Páez-Osuna F. The tidal hydrodynamics modeling of the Topolobampo coastal lagoon system and the implications for pollutant dispersion[J]. Environmental Pollution, 2007, 147(1): 282−290. doi: 10.1016/j.envpol.2006.07.007
    [24] 贾建军, 高抒, 薛允传. 山东荣成月湖潮汐汊道的时间−流速不对称特征[J]. 海洋学报, 2003, 25(3): 68−76.

    Jia Jianjun, Gao Shu, Xue Yunchuan. Patterns of time-velocity asymmetry at the Yuehu Inlet, Shandong Peninsula, China[J]. Haiyang Xuebao, 2003, 25(3): 68−76.
    [25] 蔡伟章, 陈耕心, 丁锦仁. 象山港潮汐潮流特征及成因探讨[J]. 海洋通报, 1985, 4(3): 8−12.

    Cai Weizhang, Chen Gengxin, Ding Jinren. A discussion of the features of the tide and tidal current in the Xiangshan Harbour and their cause of formation[J]. Marine Science Bulletin, 1985, 4(3): 8−12.
    [26] Van Der Spek A. Tidal asymmetry and long-term evolution of Holocene tidal basins in the Netherlands: simulation of palaeo-tides in the Schelde estuary[J]. Marine Geology, 1997, 141(1/4): 71−90.
    [27] Fortunato A B, Oliveira A. Influence of intertidal flats on tidal asymmetry[J]. Journal of Coastal Research, 2005, 21(5): 1062−1067.
    [28] Le Hir P, Roberts W, Cazaillet O, et al. Characterization of intertidal flat hydrodynamics[J]. Continental Shelf Research, 2000, 20(12/13): 1433−1459.
    [29] Dyer K R. The typology of intertidal mudflats[J]. Geological Society, London, Special Publications, 1998, 139(1): 11−24. doi: 10.1144/GSL.SP.1998.139.01.02
    [30] Friedrichs C T, Aubrey D G. Tidal propagation in strongly convergent channels[J]. Journal of Geophysical Research: Oceans, 1994, 99(C2): 3321−3336. doi: 10.1029/93JC03219
    [31] Lanzoni S, Seminara G. On tide propagation in convergent estuaries[J]. Journal of Geophysical Research: Oceans, 1998, 103(C13): 30793−30812. doi: 10.1029/1998JC900015
    [32] Ridderinkhof W, De Swart H E, Van Der Vegt M, et al. Geometry of tidal inlet systems: A key factor for the net sediment transport in tidal inlets[J]. Journal of Geophysical Research: Oceans, 2014, 119(10): 6988−7006. doi: 10.1002/2014JC010226
    [33] Cao Shuyou, Knight D W. Entropy-based design approach of threshold alluvial channels[J]. Journal of Hydraulic Research, 1997, 35(4): 505−524. doi: 10.1080/00221689709498408
    [34] Townend I. An exploration of equilibrium in Venice Lagoon using an idealised form model[J]. Continental Shelf Research, 2010, 30(8): 984−999. doi: 10.1016/j.csr.2009.10.012
    [35] Townend I. The estimation of estuary dimensions using a simplified form model and the exogenous controls[J]. Earth Surface Processes and Landforms, 2012, 37(15): 1573−1583. doi: 10.1002/esp.3256
    [36] Friedrichs C T, Aubrey D G. Equilibrium Hyposometry of Intertidal[J]. Mixing in Estuaries and Coastal Seas, 1996, 50: 405−429.
    [37] Friedrichs C T, Madsen O S. Nonlinear diffusion of the tidal signal in frictionally dominated embayments[J]. Journal of Geophysical Research: Oceans, 1992, 97(C4): 5637−5650. doi: 10.1029/92JC00354
    [38] 季小梅, 张永战, 朱大奎. 乐清湾近期海岸演变研究[J]. 海洋通报, 2006, 25(1): 44−53. doi: 10.3969/j.issn.1001-6392.2006.01.007

    Ji Xiaomei, Zhang Yongzhan, Zhu Dakui. Study on marine environment and recent coastal evolution of Yueqing Bay, Zhejiang Province, China[J]. Marine Science Bulletin, 2006, 25(1): 44−53. doi: 10.3969/j.issn.1001-6392.2006.01.007
    [39] 陈红霞, 华锋, 刘娜, 等. 不同方式的纳潮量计算比较—以胶州湾 2006 年秋季小潮为例[J]. 海洋科学进展, 2009, 27(1): 11−15.

    Chen Hongxia, Hua Feng, Liu Na, et al. Comparison among different methods for tidal prism calculation —neap tide of Jiaozhou Bay in Autumn 2006 as an expounded example[J]. Advances in Marine Science, 2009, 27(1): 11−15.
    [40] 袁菲, 何用, 卢陈, 等. 多汊道潮汐通道狮子洋的纳潮量计算及演变分析[J]. 海岸工程, 2017, 36(4): 59−66. doi: 10.3969/j.issn.1002-3682.2017.04.008

    Yuan Fei, He Yong, Lu Chen, et al. Calculation method and evolution analysis of the tidal prism of Shiziyang Tidal Channel[J]. Coastal Engineering, 2017, 36(4): 59−66. doi: 10.3969/j.issn.1002-3682.2017.04.008
    [41] Townend I, Zhou Zeng, Guo Leicheng, et al. A morphological investigation of marine transgression in estuaries[J]. Earth Surface Processes and Landforms, 2021, 46(3): 626−641. doi: 10.1002/esp.5050
    [42] Davies A M, Jones J E. The influence of bottom and internal friction upon tidal currents: taylor’s problem in three dimensions[J]. Continental Shelf Research, 1995, 15(10): 1251−1285. doi: 10.1016/0278-4343(94)00076-Y
    [43] Kang J W, Jun K S. Flood and ebb dominance in estuaries in Korea[J]. Estuarine, Coastal and Shelf Science, 2003, 56(1): 187−196. doi: 10.1016/S0272-7714(02)00156-7
    [44] Wang Z B, Jeuken M C J L, Gerritsen H, et al. Morphology and asymmetry of the vertical tide in the Westerschelde estuary[J]. Continental Shelf Research, 2002, 22(17): 2599−2609. doi: 10.1016/S0278-4343(02)00134-6
    [45] Speer P E, Aubrey D G. A study of non-linear tidal propagation in shallow inlet/estuarine systems Part II: Theory[J]. Estuarine, Coastal and Shelf Science, 1985, 21(2): 207−224. doi: 10.1016/0272-7714(85)90097-6
    [46] Boon III J D, Byrne R J. On basin hyposmetry and the morphodynamic response of coastal inlet systems[J]. Marine Geology, 1981, 40(1/2): 27−48.
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  135
  • HTML全文浏览量:  36
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-21
  • 修回日期:  2022-01-11

目录

    /

    返回文章
    返回