Study of sediment flocculation in tidal flat of Huanghe River Estuary
-
摘要: 本文基于现场观测的絮团粒径、悬沙浓度及水动力数据,研究了黄河口南部潮滩泥沙絮凝特征。研究发现,黄河口潮滩絮团粒径在25.42~264.44 μm之间,平均为95.20 μm。水体紊动对黄河口潮滩絮凝的影响存在差异,紊动对絮凝促进作用的上限约为Gl=3.76 s−1。紊动强度低于Gl时,紊动促进泥沙絮凝,絮团粒径随紊动加强而增大;反之水体紊动对絮凝主要起抑制作用,絮团粒径随紊动强度增大而减小。悬沙浓度对黄河口潮滩泥沙絮凝起抑制作用,同等紊动条件下高悬沙浓度对应的絮团粒径更小。黄河口潮滩絮团有效密度与粒径呈现负相关关系,沉速主要受粒径影响。本研究补充了对弱潮河口潮滩泥沙絮凝特性的认识。Abstract: Based on the field data of floc size, suspended sediment concentration and hydrodynamic data, the flocculation characteristics of tidal flat in the south of the Huanghe River Estuary are studied. The results show that the floc size of Huanghe River Estuary tidal flat range is 25.42–264.44 μm, and the average diameter is 95.20 μm. The effect of water turbulence on the flocculation of tidal flat at the Huanghe River Estuary is different, and the upper limit of turbulence on flocculation promotion is about Gl=3.76 s–1. While the turbulence intensity of water is lower than Gl, turbulence promotes sediment flocculation, and the particle size of floc increases with the strengthen of turbulence intensity, whereas the turbulence mainly inhibits flocculation, the particle size of floc decreases with the attenuate of turbulence intensity. The suspended sediment concentration inhibits the flocculation, particle size of floc corresponding to high sediment content under the same turbulent conditions is smaller. There is a negative correlation between the effective density and the particle size of the floc, and the settling speed of the floc is mainly affected by the particle size. This study complements the understanding of sediment flocculation characteristics in tidal flat of weak tidal estuary.
-
Key words:
- sediment /
- flocculation /
- tidal flat /
- Huanghe River Estuary
-
表 1 各个潮周期絮团粒径与紊动剪切率、悬沙浓度及流速的Spearman系数
Tab. 1 Spearman correlation coefficient of floc particle size and bottom turbulent shear rate, suspended sediment concentration and flow velocity
时期 底部紊动剪切率 悬沙浓度 流速 T1 0.51/显著相关 0.11/不相关 –0.27/不相关 T2 –0.20/不相关 –0.48/微相关 0.18/不相关 T3 –0.41/微相关 –0.48/微相关 –0.11/不相关 T4 –0.65/显著相关 –0.76/显著相关 0.34/微相关 表 2 不同Gl对应拟合结果对比
Tab. 2 Fitting results of different Gl
Gl/s−1 R²(紊动促进絮凝阶段) R²(紊动抑制絮凝阶段) 3.31 0.17 0.34 3.76 0.53 0.32 3.98 0.42 0.28 4.30 0.43 0.26 4.59 0.09 0.02 -
[1] Agrawal Y C, Pottsmith H C. Instruments for particle size and settling velocity observations in sediment transport[J]. Marine Geology, 2000, 168(1/4): 89−114. [2] Dyer K R, Manning A J. Observation of the size, settling velocity and effective density of flocs, and their fractal dimensions[J]. Journal of Sea Research, 1999, 41(1/2): 87−95. [3] Fettweis M. Uncertainty of excess density and settling velocity of mud flocs derived from in situ measurements[J]. Estuarine, Coastal and Shelf Science, 2008, 78(2): 426−436. doi: 10.1016/j.ecss.2008.01.007 [4] Gibbs R J. Estuarine flocs: their size, settling velocity and density[J]. Journal of Geophysical Research: Oceans, 1985, 90(C2): 3249−3251. doi: 10.1029/JC090iC02p03249 [5] Mikkelsen O, Pejrup M. The use of a LISST-100 laser particle sizer for in-situ estimates of floc size, density and settling velocity[J]. Geo-Marine Letters, 2001, 20(4): 187−195. doi: 10.1007/s003670100064 [6] Sternberg R W, Berhane I, Ogston A S. Measurement of size and settling velocity of suspended aggregates on the northern California continental shelf[J]. Marine Geology, 1999, 154(1/4): 43−53. [7] Madsen O S, Grant W S. The threshold of sediment movement under oscillatory waves: a discussion[J]. Journal of Sedimentary Research, 1975, 45(1): 360−361. doi: 10.1306/212F6D61-2B24-11D7-8648000102C1865D [8] 陈锦山, 何青, 郭磊城. 长江悬浮物絮凝特征[J]. 泥沙研究, 2011(5): 11−18. doi: 10.16239/j.cnki.0468-155x.2011.05.010Chen Jinshan, He Qing, Guo Leicheng. Flocculation characteristics of suspended particulate matter in Yangtze River[J]. Journal of Sediment Research, 2011(5): 11−18. doi: 10.16239/j.cnki.0468-155x.2011.05.010 [9] 程江, 何青, 王元叶. 利用LISST观测絮凝体粒径、有效密度和沉速的垂线分布[J]. 泥沙研究, 2005(1): 33−39. doi: 10.3321/j.issn:0468-155X.2005.01.006Cheng Jiang, He Qing, Wang Yuanye. Using LISST-100 for in-situ estimates of floc size, density and settling velocity, Changjiang Estuary, China[J]. Journal of Sediment Research, 2005(1): 33−39. doi: 10.3321/j.issn:0468-155X.2005.01.006 [10] 程江, 何青, 夏小明. 长江口徐六泾悬浮细颗粒泥沙絮凝体特性[J]. 海洋与湖沼, 2007, 38(4): 304−313. doi: 10.3321/j.issn:0029-814X.2007.04.003Cheng Jiang, He Qing, Xia Xiaoming. Characteristics of suspended fine sediment flocs in Changjiang (Yangtze) Estuary[J]. Oceanologia et Limnologia Sinica, 2007, 38(4): 304−313. doi: 10.3321/j.issn:0029-814X.2007.04.003 [11] 唐建华. 长江口及其邻近海域粘性细颗粒泥沙絮凝特性研究[D]. 上海: 华东师范大学, 2007.Tang Jianhua. Characteristics of fine cohesive sediment’s flocculation in the Changjiang Estuary and its adjacent sea area[D]. Shanghai: East China Normal University, 2007. [12] Xia X M , Li Y, Yang H, et al. Observations on the size and settling velocity distributions of suspended sediment in the Pearl River Estuary, China[J]. Continental Shelf Research, 2004, 24(16): 1809−1826. doi: 10.1016/j.csr.2004.06.009 [13] 邓智瑞, 何青, 杨清书, 等. 珠江口磨刀门泥沙絮凝特征[J]. 海洋学报, 2015, 37(9): 152−161.Deng Zhirui, He Qing, Yang Qingshu, et al. Observations of in situ flocs characteristic in the Modaomen Estuary of the Pearl River[J]. Haiyang Xuebao, 2015, 37(9): 152−161. [14] 林建良, 何青, 杨清书, 等. 珠江磨刀门河口洪季泥沙絮凝机理研究[J]. 泥沙研究, 2017, 42(1): 60−67.Lin Jianliang, He Qing, Yang Qingshu, et al. Study on sediment flocculation mechanism at Modaomen in the Pearl River Estuary in flood season[J]. Journal of Sediment Research, 2017, 42(1): 60−67. [15] Guo Leicheng, He Qing. Freshwater flocculation of suspended sediments in the Yangtze River, China[J]. Ocean Dynamics, 2011, 61(2-3): 371−386. doi: 10.1007/s10236-011-0391-x [16] 郭超, 何青. 长江中下游洪枯季泥沙絮凝研究[J]. 泥沙研究, 2014(5): 59−64. doi: 10.16239/j.cnki.0468-155x.2014.05.001Guo Chao, He Qing. Comparison study on flocculation between flood and dry season in Yangtze River[J]. Journal of Sediment Research, 2014(5): 59−64. doi: 10.16239/j.cnki.0468-155x.2014.05.001 [17] 郭超. 粘性泥沙絮凝沉降过程与控制机制研究[D]. 上海: 华东师范大学, 2018.Guo Chao. Cohesive sediment flocculation and settling processes and the controlling mechanisms[D]. Shanghai: East China Normal University, 2018. [18] 郭超, 何青. 黏性泥沙絮凝研究综述与展望[J]. 泥沙研究, 2021, 46(2): 66−73.Guo Chao, He Qing. Review of the research on cohesive sediment flocculation[J]. Journal of Sediment Research, 2021, 46(2): 66−73. [19] 郭超, 何青, 郭磊城, 等. 紊动对黏性细颗粒泥沙絮凝沉降影响的试验研究[J]. 泥沙研究, 2019, 44(2): 18−25.Guo Chao, He Qing, Guo Leicheng, et al. Study on the effects of turbulence on cohesive sediment flocculation and settling properties[J]. Journal of Sediment Research, 2019, 44(2): 18−25. [20] 朱中凡, 赵明, 杨铁笙. 紊动水流中细颗粒泥沙絮凝发育特征的试验研究[J]. 水力发电学报, 2010, 29(4): 77−83.Zhu Zhongfan, Zhao Ming, Yang Tiesheng. Experimental research on the flocculation characteristics of cohesive sediment in turbulent flow[J]. Journal of Hydroelectric Engineering, 2010, 29(4): 77−83. [21] Guo Chao, He Qing, van Prooijen B C, et al. Investigation of flocculation dynamics under changing hydrodynamic forcing on an intertidal mudflat[J]. Marine Geology, 2018, 395: 120−132. [22] Hill P S, Newgard J P, Law B A, et al. Flocculation on a muddy intertidal flat in Willapa Bay, Washington, Part II: Observations of suspended particle size in a secondary channel and adjacent flat[J]. Continental Shelf Research, 2013, 60 Suppl 1: S145−S156. [23] Law B A, Milligan T G, Hill P S, et al. Flocculation on a muddy intertidal flat in Willapa Bay, Washington, Part I: A regional survey of the grain size of surficial sediments[J]. Continental Shelf Research, 2013, 60 Suppl 1: S136−S144. [24] Poirier E, van Proosdij D, Milligan T G. The effect of source suspended sediment concentration on the sediment dynamics of a macrotidal creek and salt marsh[J]. Continental Shelf Research, 2017, 148: 130−138. [25] 李博闻, 单红仙, 张少同, 等. 波浪与潮流对潮滩悬沙含量贡献的现场观测[J]. 海洋地质与第四纪地质, 2016, 36(3): 183−190.Li Bowen, Shan Hongxian, Zhang Shaotong, et al. Contribution of waves and currents to sediment suspension revealed by in-situ observation[J]. Marine Geology & Quaternary Geology, 2016, 36(3): 183−190. [26] 于守兵, 凡姚申. 黄河三角洲海岸线标准对陆地面积的影响[J]. 海洋地质前沿, 2021, 37(2): 1−9.Yu Shoubing, Fan Yaoshen. Coastline criteria for land area of the Huanghe River Delta and their significance[J]. Marine Geology Frontiers, 2021, 37(2): 1−9. [27] 程义吉, 高菁. 莱州湾海域水文特征及冲淤变化分析[J]. 海岸工程, 2006, 25(3): 1−6. doi: 10.3969/j.issn.1002-3682.2006.03.001Cheng Yiji, Gao Jing. Analysis of hydrographic characteristics and changes in scour and silting in the Laizhou Bay Area[J]. Coastal Engineering, 2006, 25(3): 1−6. doi: 10.3969/j.issn.1002-3682.2006.03.001 [28] 张盼. 莱州湾西南部现代沉积环境研究[D]. 青岛: 中国海洋大学, 2014.Zhang Pan. A study on modern sedimentary environment in southwestern Laizhou Bay[D]. Qingdao: Ocean University of China, 2014. [29] 沈逸. 河口含沙量率定及悬沙输运应用研究[D]. 上海: 华东师范大学, 2018.Shen Yi. A study on the calibration of optical backscatter sensors for measurement of suspended sediment concentration and its application for suspended sediment transport processes[D]. Shanghai: East China Normal University, 2018. [30] 陈语, 何青, 张迨, 等. 长江口浑浊带枯季悬沙粒度分布特征[J]. 泥沙研究, 2016(1): 24−30.Chen Yu, He Qing, Zhang Dai, et al. Grain size distribution of suspended sediment in Yangtze River Estuary turbidity maximum in dry season[J]. Journal of Sediment Research, 2016(1): 24−30. [31] 于上, 何青, 陈语, 等. 长江口最大浑浊带悬沙粒度对流域减沙的响应研究[J]. 泥沙研究, 2021, 46(4): 60−67.Yu Shang, He Qing, Chen Yu, et al. Response of suspended sediment particle size to sediment reduction in the Yangtze Estuary turbidity maximum zone[J]. Journal of Sediment Research, 2021, 46(4): 60−67. [32] Christiansen T, Wiberg P L, Milligan T G. Flow and sediment transport on a tidal salt marsh surface[J]. Estuarine, Coastal and Shelf Science, 2000, 50(3): 315−331. doi: 10.1006/ecss.2000.0548 [33] Dey S. Turbulence in open-channel flows[M]//Dey S. Fluvial Hydrodynamics. Berlin, Heidelberg: Springer, 2014: 95−187. [34] Wiberg P, Smith J D. A comparison of field data and theoretical models for wave-current interactions at the bed on the continental shelf[J]. Continental Shelf Research, 1983, 2(2/3): 147−162. [35] Kim S C, Friedrichs C T, Maa J P Y, et al. Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data[J]. Journal of Hydraulic Engineering, 2000, 126(6): 399−406. [36] Xie Weiming, He Qing, Wang Xianye, et al. Role of mudflat-creek sediment exchanges in intertidal sedimentary processes[J]. Journal of Hydrology, 2018, 567: 351−360. [37] 李华国, 袁美琦, 张秀芹. 淤泥临界起动条件及冲刷率试验研究[J]. 水道港口, 1995(3): 20−26.Li Huaguo, Yuan Meiqi, Zhang Xiuqin. Study on critical motion and erosion of cohesive sediment[J]. Journal of Waterway and Harbor, 1995(3): 20−26. [38] 张耀哲, 王敬昌. 水库淤积泥沙干容重分布规律及其计算方法的研究[J]. 泥沙研究, 2004(3): 54−58. doi: 10.3321/j.issn:0468-155X.2004.03.008Zhang Yaozhe, Wang Jingchang. Study on distribution and calculation method of reservoir sediment dry bulk density[J]. Journal of Sediment Research, 2004(3): 54−58. doi: 10.3321/j.issn:0468-155X.2004.03.008 [39] Verstraeten G, Poesen J. Variability of dry sediment bulk density between and within retention ponds and its impact on the calculation of sediment yields[J]. Earth Surface Processes and Landforms, 2001, 26(4): 375−394. doi: 10.1002/esp.186 [40] Lumborg U. Modelling the deposition, erosion, and flux of cohesive sediment through Øresund[J]. Journal of Marine Systems, 2005, 56(1/2): 179−193. doi: 10.1016/j.jmarsys.2004.11.003 [41] 史本伟. 长江口崇明东滩盐沼−光滩过渡带沉积动力过程研究[D]. 上海: 华东师范大学, 2012.Shi Benwei. Sediment dynamic processes over transitional zone of salt marsh-mudflat on Eastern Chongming Island, Yangtze Estuary[D]. Shanghai: East China Normal University, 2012. [42] 郑杰文. 现代黄河三角洲沉积物波浪动力响应过程对其再悬浮控制作用研究[D]. 青岛: 中国海洋大学, 2013.Zheng Jiewen. The role of seabed dynamic response in sediment resuspension under waves in modern Yellow River Delta[D]. Qingdao: Ocean University of China, 2013. [43] 谢卫明, 何青, 王宪业, 等. 潮沟系统水沙输运研究——以长江口崇明东滩为例[J]. 海洋学报, 2017, 39(7): 80−91.Xie Weiming, He Qing, Wang Xianye, et al. Hydrodynamic process and sediment transport in a tidal creek system over the Easten Chongming Island, Yangtze Estuary[J]. Haiyang Xuebao, 2017, 39(7): 80−91. [44] Winterwerp J C, Manning A J, Martens C, et al. A heuristic formula for turbulence-induced flocculation of cohesive sediment[J]. Estuarine, Coastal and Shelf Science, 2006, 68(1/2): 195−207. doi: 10.1016/j.ecss.2006.02.003 [45] Eisma D, Li A. Changes in suspended-matter floc size during the tidal cycle in the dollard estuary[J]. Netherlands Journal of Sea Research, 1993, 31(2): 107−117. doi: 10.1016/0077-7579(93)90001-9 [46] 柴朝晖, 方红卫, 王茜, 等. 水流和电解质对黏性泥沙絮凝沉降影响试验[J]. 水科学进展, 2017, 28(2): 285−292. doi: 10.14042/j.cnki.32.1309.2017.02.014Chai Zhaohui, Fang Hongwei, Wang Xi, et al. Effect of flow and electrolyte on the flocculation-settling of cohesive sediment[J]. Advances in Water Science, 2017, 28(2): 285−292. doi: 10.14042/j.cnki.32.1309.2017.02.014