留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冰脊间遮掩作用对冰−水拖曳力影响的实验研究

王爽 卢鹏 祖永恒 张丽敏 王庆凯 李志军

王爽,卢鹏,祖永恒,等. 冰脊间遮掩作用对冰−水拖曳力影响的实验研究[J]. 海洋学报,2022,44(7):65–71 doi: 10.12284/hyxb2022104
引用本文: 王爽,卢鹏,祖永恒,等. 冰脊间遮掩作用对冰−水拖曳力影响的实验研究[J]. 海洋学报,2022,44(7):65–71 doi: 10.12284/hyxb2022104
Wang Shuang,Lu Peng,Zu Yongheng, et al. Experimental study on the sheltering effect between ice ridges on ice-water drag force[J]. Haiyang Xuebao,2022, 44(7):65–71 doi: 10.12284/hyxb2022104
Citation: Wang Shuang,Lu Peng,Zu Yongheng, et al. Experimental study on the sheltering effect between ice ridges on ice-water drag force[J]. Haiyang Xuebao,2022, 44(7):65–71 doi: 10.12284/hyxb2022104

冰脊间遮掩作用对冰−水拖曳力影响的实验研究

doi: 10.12284/hyxb2022104
基金项目: 国家自然科学基金(41922045,41876213);国家重点研发计划(2018YFA0605901);中央高校基本科研业务(DUT20GJ206)。
详细信息
    作者简介:

    王爽(1997-),女,辽宁省沈阳市人,博士生,主要从事海冰拖曳问题研究。E-mail: 21906217@mail.dlut.edu.cn

    通讯作者:

    卢鹏,男,教授,主要从事海冰动力学和海冰遥感研究。E-mail: lupeng@dlut.edu.cn

  • 中图分类号: P731.15;P941.62

Experimental study on the sheltering effect between ice ridges on ice-water drag force

  • 摘要: 为定量研究多冰脊之间的尾流遮掩作用对海冰漂移运动的影响,物理模型试验(试验有限水深为0.45 m)测量了多冰脊拖曳力的衰减变化。冰脊模型选用底角为45°的等腰直角三角形,选取了4种入水深度、9种冰脊间距进行测量。试验结果得到了前后冰脊拖曳力及其比值在尾流遮掩情况下的变化规律。前冰脊拖曳力与单冰脊情况一致,与冰脊速度的平方保持线性关系;而后冰脊在间距较小时出现了反向拖曳力,随冰脊间距的增大,后冰脊拖曳系数先减小再增大至不变。前后冰脊拖曳力比值的变化规律可以用指数遮掩函数来描述,该遮掩函数与冰脊间距和入水深度有关而与流速无关。通过与现有海冰模式中的遮掩函数对比,研究结论增强了该指数公式的适用性,加强了对海冰动力学模式中遮掩函数的理解。
  • 图  1  实验示意图(a)和物理模型实验装置图(b)

    Fig.  1  The sketch of the experimental study (a) and physical model test device diagram (b)

    图  2  前冰脊拖曳力F1随无量纲间距L/H的变化

    Fig.  2  Variation of drag force of front ice ridge F1 with dimensionless distance L/H

    图  3  后冰脊拖曳力F2V 2的变化情况

    Fig.  3  Variation of drag force of back ice ridge F2 with the square of velocity(V 2)

    图  4  后冰脊拖曳力F2随无量纲间距L/H的变化情况

    Fig.  4  Variation of drag force of back ice ridge F2 with dimensionless distance L/H

    图  5  拖曳力比值F2/F1随无量纲间距L/H变化

    Fig.  5  The drag force ratio F2/F1 changes with the dimensionless distance L/H

    表  1  模型实验相似依据

    Tab.  1  Similarity basis of model experiment

    无因次数冰脊拖曳
    系数Cr
    无量纲
    间距
    雷诺数Re无量纲入水
    深度
    冰脊底角
    表达式$ {\dfrac{F}{ {\rho}{V}^{\text{2} }{H} } }$$ { \dfrac{{L} }{{H} } }$$ {\dfrac{ {VH} }{ {V} } }$$ {\dfrac{{D} }{{H} } }$a
    下载: 导出CSV
  • [1] 吴辉碇, 白珊, 张占海. 海冰动力学过程的数值模拟[J]. 海洋学报, 1998, 20(2): 1−13.

    Wu Huiding, Bai Shan, Zhang Zhanhai. Numerical simulation of sea ice dynamics[J]. Haiyang Xuebao, 1998, 20(2): 1−13.
    [2] Wamser C, Martinson D G. Drag coefficients for winter Antarctic pack ice[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(C7): 12431−12437. doi: 10.1029/93JC00655
    [3] 吴岩. 冰脊对冰下流场影响的数值模拟研究[D]. 大连: 大连理工大学, 2016.

    Wu Yan. Numerical simulation on the influence of ice ridges on the flow field under ice[D]. Dalian: Dalian University of Technology, 2016.
    [4] Lu Peng, Li Zhijun, Cheng Bin, et al. A parameterization of the ice-ocean drag coefficient[J]. Journal of Geophysical Research: Oceans, 2011, 116(C7): C07019.
    [5] Davis N R, Wadhams P. A statistical analysis of Arctic pressure ridge morphology[J]. Journal of Geophysical Research: Oceans, 1995, 100(C6): 10915. doi: 10.1029/95JC00007
    [6] Hanssen-Bauer I, Gjessing Y T. Observations and model calculations of aerodynamic drag on sea ice in the Fram Strait[J]. Tellus A, 1988, 40(2): 151−161. doi: 10.3402/tellusa.v40i2.11789
    [7] Lüpkes C, Gryanik V M, Hartmann J, et al. A parametrization, based on sea ice morphology, of the neutral atmospheric drag coefficients for weather prediction and climate models[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D13): D13112.
    [8] Tsamados M, Feltham D L, Schroeder D, et al. Impact of variable atmospheric and oceanic form drag on simulations of arctic sea ice[J]. Journal of Physical Oceanography, 2014, 44(5): 1329−1353. doi: 10.1175/JPO-D-13-0215.1
    [9] Tennekes H, Lumley J L. A First Course in Turbulence[M]. Cambridge: MIT Press, 1972.
    [10] Steele M, Morison J H, Untersteiner N. The partition of air-ice-ocean momentum exchange as a function of ice concentration, floe size, and draft[J]. Journal of Geophysical Research: Oceans, 1989, 94(C9): 12739−12750. doi: 10.1029/JC094iC09p12739
    [11] Zu Yongheng, Lu Peng, Yu Miao, et al. Laboratory experimental study of water drag force exerted on ridge keel[J]. Advances in Polar Science, 2020, 31(1): 41−47.
    [12] 沈国光, 项伟征. 海洋内波的相似性分析[J]. 天津大学学报, 2002, 35(6): 691−695.

    Shen Guoguang, Xiang Weizheng. Similarity analyses of ocean internal wave research[J]. Journal of Tianjin University, 2002, 35(6): 691−695.
    [13] Waters J K, Bruno M S. Internal wave generation by ice floes moving in stratified water: Results from a laboratory study[J]. Journal of Geophysical Research Oceans, 1995, 100(C7): 13635−13639. doi: 10.1029/95JC01220
    [14] Pite H D, Topham D R, Van Hardenberg B J. Laboratory measurements of the drag force on a family of two-dimensional ice keel models in a two-layer flow[J]. Journal of Physical Oceanography, 1995, 25(12): 3008−3031. doi: 10.1175/1520-0485(1995)025<3008:LMOTDF>2.0.CO;2
    [15] Zu Yongheng, Lu Peng, Leppäranta M, et al. On the form drag coefficient under ridged ice: Laboratory experiments and numerical simulations from ideal scaling to deep water[J]. Journal of Geophysical Research: Oceans, 2021, 126(8): e2020JC016976.
    [16] Lu Peng, Li Zhijun, Han Hongwei. Introduction of parameterized sea ice drag coefficients into ice free-drift modeling[J]. Acta Oceanologica Sinica, 2016, 35(1): 53−59. doi: 10.1007/s13131-016-0796-y
    [17] Hoerner S F. Fluid-dynamic drag[M] Theoretical, Experimental and Statistical Information. Vancouver: SF Hoerner Fluid Dynamics, 1958.
    [18] 黄明海, 齐鄂荣, 李炜. PIV在二维后向台阶流实验研究中的应用[J]. 武汉大学学报(工学版), 2005, 38(2): 35−38.

    Huang Minghai, Qi Erong, Li Wei. Study on 2D flow over a backward facing step flow with particle image velocimetry[J]. Journal of Wuhan University, 2005, 38(2): 35−38.
    [19] 张俊, 张晓婷. 流体传输中流体阻力和水头损失的计算[J]. 流体传动与控制, 2011(4): 24−27. doi: 10.3969/j.issn.1672-8904.2011.04.006

    Zhang Jun, Zhang Xiaoting. The analysis of the fluid resistance and the pressure loss in fluid transmission system[J]. Fluicl Power Transmission and Control, 2011(4): 24−27. doi: 10.3969/j.issn.1672-8904.2011.04.006
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  54
  • HTML全文浏览量:  29
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-21
  • 修回日期:  2021-12-17

目录

    /

    返回文章
    返回