留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

渗透海床上矩形Bragg防波堤对波浪反射的研究

倪云林 龚倩 沈梦佳

倪云林,龚倩,沈梦佳. 渗透海床上矩形Bragg防波堤对波浪反射的研究[J]. 海洋学报,2022,44(x):1–8 doi: 10.12284/hyxb2022103
引用本文: 倪云林,龚倩,沈梦佳. 渗透海床上矩形Bragg防波堤对波浪反射的研究[J]. 海洋学报,2022,44(x):1–8 doi: 10.12284/hyxb2022103
Ni Yunlin,Gong Qian,Shen Mengjia. Study of wave reflection by the Bragg breakwater with rectangular bars on the porous seabed[J]. Haiyang Xuebao,2022, 44(x):1–8 doi: 10.12284/hyxb2022103
Citation: Ni Yunlin,Gong Qian,Shen Mengjia. Study of wave reflection by the Bragg breakwater with rectangular bars on the porous seabed[J]. Haiyang Xuebao,2022, 44(x):1–8 doi: 10.12284/hyxb2022103

渗透海床上矩形Bragg防波堤对波浪反射的研究

doi: 10.12284/hyxb2022103
基金项目: 国家自然科学基金(51879237,11572092)
详细信息
    作者简介:

    倪云林(1986—),男,浙江舟山人,博士,主要从事波浪对海上建筑物作用的研究。E-mail:nylzjou@126.com

    通讯作者:

    倪云林,讲师,主要从事波浪对海上建筑物作用的研究。E-mail:nylzjou@126.com

Study of wave reflection by the Bragg breakwater with rectangular bars on the porous seabed

  • 摘要: 与海床不可渗透的情况相比,波浪在可渗透海床上传播时会发生波能衰减。本文将基于可渗透海床上一维修正型缓坡方程,建立方程求解的有限差分模型。将通过与Zeng等不可渗透海床上矩形Bragg防波堤对波浪反射系数解析解的对比,验证有限差分模型的正确性和适用性。进一步,将研究海床可渗透情况下,海床的渗透性参数、坝体的相对宽度、数量、浸没度对波浪反射系数的影响及其与海床不可渗透情况下的差异。本文研究发现Bragg共振发生时的反射系数随坝体数量的增多而增大,随海床渗透性参数和坝体浸没度的增大而减小,并且存在一个坝体相对宽度值会使Bragg共振反射达到最大。相较于海床不可渗透的情况,发生Bragg共振反射的波浪频率几乎相同,但反射系数减小,而且,零反射(或全透射)现象在不再存在。
  • 图  1  渗透海床上多孔矩形Bragg防波堤平面示意图

    Fig.  1  Bragg breakwaters with porous rectangular bars on a permeable seabed

    图  2  本文数值解与Zeng等[17]解析解的比较

    Fig.  2  The comparison of the numerical solutions with Zeng et al’s[17] analytical solutions

    图  3  本文数值解与Savage和Fairchild[18]实验修正结果的比较

    Fig.  3  The comparison of the present numerical solutions with Savage and Fairchild’s[18] modified experimental results

    图  4  海床渗透性参数T对Bragg共振反射的影响

    Fig.  4  Influence of the seabed permeability parameter T on Bragg resonance reflection

    图  5  坝体相对宽度w/d对Bragg共振反射的影响

    Fig.  5  Influence of the bar width w/d on the Bragg resonance reflection

    图  6  坝体数量N对Bragg共振反射的影响

    Fig.  6  Influence of the bar number N on the Bragg resonance reflection

    图  7  坝体浸没度S对Bragg共振反射的影响

    Fig.  7  Influence of bar submergence S on Bragg resonance reflection

    表  1  不同多孔介质的渗透性参数T取值

    Tab.  1  Values of the permeability parameter T for different porous media

    研究人员多孔介质渗透性参数T
    Mizutani和Mostafa防波堤0.018 0 s
    粗砂0.002 2 s
    周李杰防波堤0.001 0 s
    任玉斌钙质砂0.001 2 s
    下载: 导出CSV

    表  2  海床不同渗透性参数Bragg共振反射的特征值

    Tab.  2  Eigenvalues of Bragg resonance reflection under different permeability of seabed

    坝体数量(N)渗透性参数(T)Bragg共振反射位置(2d/L)反射系数(KR)
    30 s0.9190.416
    0.005 s0.9190.403
    0.010 s0.9190.391
    0.030 s0.9190.347
    40 s0.9190.526
    0.005 s0.9190.504
    0.010 s
    0.030 s
    0.919
    0.919
    0.484
    0.415
    下载: 导出CSV

    表  3  不同坝体浸没度情况下Bragg共振反射的特征值

    Tab.  3  Characteristic values of Bragg resonance reflection under different bar submergence

    渗透性参数(T)坝体浸没度(S)Bragg共振反射位置(2d/L)反射系数(KR)
    0s0.500.9300.839
    0.6251.0560.651
    0.751.2250.416
    0.8751.3730.201
    0.005s0.500.9300.839
    0.6251.0560.634
    0.751.2250.403
    0.8751.3730.195
    下载: 导出CSV
  • [1] Bragg W H, Bragg W L. The reflection of X-rays by crystals[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1913, 88(605): 428−438.
    [2] Davies A G. The reflection of wave energy by undulations on the seabed[J]. Dynamics of Atmospheres and Oceans, 1982, 6(4): 207−232. doi: 10.1016/0377-0265(82)90029-X
    [3] Mei C C, Hara T, Naciri M. Note on Bragg scattering of water waves by parallel bars on the seabed[J]. Journal of Fluid Mechanics, 1988, 186: 147−162. doi: 10.1017/S0022112088000084
    [4] Hsu T W, Chang H K, Tsai L H. Bragg reflection of waves by different shapes of artificial bars[J]. China Ocean Engineering, 2002, 16(3): 343−358.
    [5] 蔡立宏. 波浪通过系列潜堤之布拉格反射研究[D]. 台南: 台湾成功大学, 2003.

    Cai L H. Study on Bragg reflection of waves passing through a series of submerged breakwaters[D]. Tainan, China: National Cheng Kung University, 2003.
    [6] Wen C C, Tsai L H. Numerical simulation of Bragg reflection based on linear waves propagation over a series of rectangular seabed[J]. China Ocean Engineering, 2008, 22(1): 71−86.
    [7] 江鸣. 波浪通过系列矩形潜堤的数值模拟[D]. 天津: 天津大学, 2012.

    Jiang Ming. Numerical simulation of wave propagation over a series of submerged rectangular dikes[D]. Tianjin: Tianjin University, 2012.
    [8] Liu Huanwen, Shi Yunping, Cao Dunqian. Optimization of parabolic bars for maximum Bragg resonant reflection of long waves[J]. Journal of Hydrodynamics, 2015, 27(3): 373−382. doi: 10.1016/S1001-6058(15)60495-4
    [9] Liu Huanwen, Zeng Huidan, Huang Huidong. Bragg resonant reflection of surface waves from deep water to shallow water by a finite array of trapezoidal bars[J]. Applied Ocean Research, 2020, 94: 101976. doi: 10.1016/j.apor.2019.101976
    [10] Liu Huanwen, Luo Heng, Zeng Huidan. Optimal collocation of three kinds of Bragg breakwaters for Bragg resonant reflection by long waves[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2015, 141(3): 04014039. doi: 10.1061/(ASCE)WW.1943-5460.0000278
    [11] 曾慧丹. 全波谱条件下三类布拉格防波堤的最优配置[D]. 南宁: 广西民族大学, 2014.

    Zeng Huidan. Optimal collocation of Bragg breakwaters for Bragg resonance by water waves in the whole wave range[D]. Nanning: Guangxi University for Nationalities, 2014.
    [12] 曾慧丹, 刘焕文, 唐国吉. 矩形Bragg防波堤引起线性长波共振反射的最优配置[C]//第十六届中国海洋(岸)工程学术讨论会论文集 . 大连: 中国海洋学会, 2013: 663-672.

    Zeng Huidan, Liu Huanwen, Tang Guoji. Optimal configuration of linear long waves resonance reflection induced by rectangular Bragg breakwater[C]//Proceedings of the Sixteenth Chinese Symposium on Marine (Coastal) Engineering (Volume I). Dalian: Chinese Society for Oceanography, 2013: 663-672.
    [13] Dean R G, Dalrymple R A. Water Wave Mechanics for Engineers and Scientists[M]. Singapore: World Scientific, 1984: 353.
    [14] Mendez F J, Losada I J. A perturbation method to solve dispersion equations for water waves over dissipative media[J]. Coastal Engineering, 2004, 51(1): 81−89. doi: 10.1016/j.coastaleng.2003.12.007
    [15] Ni Yunlin, Teng Bin. Bragg resonant reflection of water waves by a Bragg breakwater with porous rectangular bars on a sloping permeable seabed[J]. Ocean Engineering, 2021, 235: 109333. doi: 10.1016/j.oceaneng.2021.109333
    [16] Ni Yunlin, Teng Bin. Bragg resonant reflection of water waves by a Bragg breakwater with porous trapezoidal bars on a sloping permeable seabed[J]. Applied Ocean Research, 2021, 114: 102770. doi: 10.1016/j.apor.2021.102770
    [17] Zeng Huidan, Qin Bin, Zhang Jinghua. Optimal collocation of Bragg breakwaters with rectangular bars on sloping seabed for Bragg resonant reflection by long waves[J]. Ocean Engineering, 2017, 130: 156−165. doi: 10.1016/j.oceaneng.2016.11.066
    [18] Savage R P, Fairchild J C. Laboratory study of wave energy losses by bottom friction and percolation[J]. Beach Erosion Board, 1953, 31: 1−25.
    [19] Mizutani N, Mostafa A M. Dynamic interaction of nonlinear waves and a seawall over sand seabed[J]. International Journal of Offshore and Polar Engineering, 1998, 8(1): 30−38.
    [20] 周李杰. 烟台港抛石防波堤波浪动力响应的数值分析[D]. 武汉: 武汉理工大学, 2018.

    Zhou Lijie. Numerical analysis of wave-induced dynamics of a rubble mould breakwater at Yantai port[D]. Wuhan: Wuhan University of Technology, 2018.
    [21] 任玉宾, 王胤, 杨庆. 颗粒级配与形状对钙质砂渗透性的影响[J]. 岩土力学, 2018, 39(2): 491−497.

    Ren Yubin, Wang Yin, Yang Qing. Effects of particle size distribution and shape on permeability of calcareous sand[J]. Rock and Soil Mechanics, 2018, 39(2): 491−497.
    [22] 倪云林, 章哲文, 唐志波, 等. 波浪在沙质海床上传播波长变化[J]. 水利水运工程学报, 2017(3): 51−55.

    Ni Yunlin, Zhang Zhewen, Tang Zhibo, et al. Changes in wavelength of wave propagation over a sandy seabed[J]. Hydro-Science and Engineering, 2017(3): 51−55.
    [23] 王忠涛, 栾茂田, 郑东生. 多孔介质海床对波浪传播影响理论分析[J]. 大连理工大学学报, 2009, 49(6): 891−896. doi: 10.7511/dllgxb200906020

    Wang Zhongtao, Luan Maotian, Zheng Dongsheng. Dynamic analysis for effects of porous seabed on wave propagation[J]. Journal of Dalian University of Technology, 2009, 49(6): 891−896. doi: 10.7511/dllgxb200906020
    [24] Guazzelli E, Rey V, Belzons M. Higher-order Bragg reflection of gravity surface waves by periodic beds[J]. Journal of Fluid Mechanics, 1992, 245: 301−317. doi: 10.1017/S0022112092000478
    [25] Liu Huanwen, Yang Jing, Lin Pengzhi. An analytic solution to the modified mild-slope equation for wave propagation over one-dimensional piecewise smooth topographies[J]. Wave Motion, 2012, 49(3): 445−460. doi: 10.1016/j.wavemoti.2012.01.002
    [26] Liu Huanwen, Li Xiaofeng, Lin Pengzhi. Analytical study of Bragg resonance by singly periodic sinusoidal ripples based on the modified mild-slope equation[J]. Coastal Engineering, 2019, 150: 121−134. doi: 10.1016/j.coastaleng.2019.04.015
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  18
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-18
  • 修回日期:  2022-03-03
  • 网络出版日期:  2022-04-15

目录

    /

    返回文章
    返回