留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空心块体水沙动力及泥沙淤积特性研究

侯仲荃 石进 王宪业 郭磊城 谢卫明 徐凡 黄明毅 何青

侯仲荃,石进,王宪业,等. 空心块体水沙动力及泥沙淤积特性研究[J]. 海洋学报,2022,44(5):124–133 doi: 10.12284/hyxb2022101
引用本文: 侯仲荃,石进,王宪业,等. 空心块体水沙动力及泥沙淤积特性研究[J]. 海洋学报,2022,44(5):124–133 doi: 10.12284/hyxb2022101
Hou Zhongquan,Shi Jin,Wang Xianye, et al. Study on flow and sediment dynamics and deposition characteristics of hollow block[J]. Haiyang Xuebao,2022, 44(5):124–133 doi: 10.12284/hyxb2022101
Citation: Hou Zhongquan,Shi Jin,Wang Xianye, et al. Study on flow and sediment dynamics and deposition characteristics of hollow block[J]. Haiyang Xuebao,2022, 44(5):124–133 doi: 10.12284/hyxb2022101

空心块体水沙动力及泥沙淤积特性研究

doi: 10.12284/hyxb2022101
基金项目: 国家自然科学基金重点项目 (51739005);国家自然科学基金 (41876091);科技部中荷战略合作重点研发项目(2016YFE0133700);上海市科委重大研究项目(20DZ1204701)
详细信息
    作者简介:

    侯仲荃(1996-),男,江苏省连云港市人,主要从事河口海岸水沙动力及工程应用研究。E-mail:51183904048@stu.ecnu.edu.cn

    通讯作者:

    何青,教授,主要从事水力学、河流动力学及河口海岸泥沙运动力学研究。E-mail:qinghe@sklec.ecnu.edu.cn

  • 中图分类号: TV32

Study on flow and sediment dynamics and deposition characteristics of hollow block

  • 摘要: 空心块体具有良好的阻水和促淤功能,近年来被广泛用于生态修复工程。本文结合水槽试验及Flow-3D数值模拟,分析了开敞型和半封闭型空心块体的阻水效应和泥沙淤积特性。结果表明:空心块体的开孔率对内部水流流速、紊动强度起主导作用,开孔率较小的半开敞型空心块体减速、制紊效果更强;开敞型和半封闭型空心块体近底层悬沙浓度分别增大56%和75%,两者均有利于促进泥沙在块体内部淤积,近底层水流紊动越强,泥沙淤积形态差异越大;空心块体所营造的低流速、泥沙微淤、内外连通的水沙环境是大型底栖生物的生境需求,半封闭型空心块体内部的低紊动水流结构更有利于大型底栖生物的栖息、繁衍。
  • 图  1  空心块体三视图及模型图(单位: mm)

    Fig.  1  Three views and model diagram of the hollow block (unit: mm)

    图  2  水槽试验用沙累计频率分布曲线

    Fig.  2  Curve of sediment grading for the flume experiment

    图  3  空心块体水槽试验测点布置(单位:mm)

    Fig.  3  Layout of measuring points for hollow block flume experiment (unit: mm)

    图  4  空心块体数值模型及网格划分

    Fig.  4  Numerical model and grid division of hollow block

    图  5  部分点位垂线方向流速(${u} $)验证

    Fig.  5  Verification of vertical flow velocity (${u} $) at some points

    图  6  空心块体部分点位流速、紊动强度垂线分布

    Fig.  6  Vertical distribution of velocity and turbulence intensity at some points in the hollow block

    图  7  空心块体部分点位悬沙浓度垂线分布

    Fig.  7  Vertical distribution of suspended sediment concentration at some points of the hollow block

    图  8  开敞型空心块体内部泥沙淤积分布

    Fig.  8  Distribution of sediment deposition in open hollow block

    图  9  半封闭型空心块体内部泥沙淤积分布

    Fig.  9  Distribution of sediment deposition in semi-closed hollow block

    图  10  空心块体近底层水流流速、紊动强度分布(截面z=5 cm)

    Fig.  10  The distribution diagram of velocity and turbulence intensity near the bottom of the hollow block (Section z=5 cm)

    图  11  空心块体侧视面流场分布(截面y=0 cm)

    Fig.  11  The flow field distribution diagram of the hollow block in side view (Section y=0 cm)

    图  12  空心块体近底层紊动能分布(截面z=5 cm)

    Fig.  12  Distribution diagram of turbulent kinetic energy near the bottom of the hollow block (Section z=5 cm)

    表  1  空心块体透水能力参数

    Tab.  1  Hollow block water permeability parameter

    结构型式透水截面面积/cm2总透水面积S0/cm2开孔率S0/S
    x轴方向y轴方向z轴方向
    开敞型10010019679233%
    半封闭型19.619.2顶面64
    底面196
    337.614%
    注:S为包含结构体外轮廓总面积S=20$ \text{×} $20$ \text{×} $6=2 400 (cm²)。
    下载: 导出CSV

    表  2  长江口目标生物生境需求指标[20]

    Tab.  2  Target biological habitat demand indicators for the Changjiang River Estuary[20]

    生物类别代表性物种生境需求指标
    双壳类河蚬、黑龙江河篮蛤、
    彩虹明樱蛤等
    河蚬、黑龙江河篮蛤一般栖息在底质0~5 cm深度;彩虹明樱蛤栖息深度一般在4~15 cm
    甲壳类中华绒螯蟹等中华绒螯蟹在南槽水域主要为抱卵蟹和蚤状幼体,抱卵蟹适应流速不大于1.5 m/s,
    蚤状幼体适应流速不大于0.7 m/s,幼蟹介于两者之间
    多毛类沙蚕沙蚕栖息深度在0~30 cm,基本生活在沉积底质内,
    受水流作用影响相对较小
    下载: 导出CSV
  • [1] 范航清, 何斌源, 王欣, 等. 生态海堤理念与实践[J]. 广西科学, 2017, 24(5): 427−434, 440.

    Fan Hangqing, He Binyuan, Wang Xin, et al. The conception and practices of ecological sea dyke[J]. Guangxi Sciences, 2017, 24(5): 427−434, 440.
    [2] Mitsch W J, Jørgensen S E. Ecological Engineering: An Introduction to Ecotechnology[M]. New York: John Wiley & Sons, Inc. , 1989.
    [3] 李泽龙, 孙林云, 唐磊, 等. 河口海岸保滩促淤方式及水沙机理研究综述[J]. 中国港湾建设, 2018, 38(11): 1−8. doi: 10.7640/zggwjs201811001

    Li Zelong, Sun Linyun, Tang Lei, et al. Review on beach protection and deposition promotion and water and sediment transport mechanism in estuaries and coastal area[J]. China Harbour Engineering, 2018, 38(11): 1−8. doi: 10.7640/zggwjs201811001
    [4] Ido S, Shimrit P F. Blue is the new green-ecological enhancement of concrete based coastal and marine infrastructure[J]. Ecological Engineering, 2015, 84: 260−272. doi: 10.1016/j.ecoleng.2015.09.016
    [5] Heatherington C, Bishop M J. Spatial variation in the structure of mangrove forests with respect to seawalls[J]. Marine and Freshwater Research, 2012, 63(10): 926−933. doi: 10.1071/MF12119
    [6] 杨芳丽, 耿嘉良, 付中敏, 等. 长江中游航道整治中生态技术应用探讨[J]. 人民长江, 2012, 43(24): 68−71. doi: 10.3969/j.issn.1001-4179.2012.24.018

    Yang Fangli, Geng Jialiang, Fu Zhongmin, et al. Exploration on application of eco-technology in waterway regulation project at midstream of Yangtze River[J]. Yangtze River, 2012, 43(24): 68−71. doi: 10.3969/j.issn.1001-4179.2012.24.018
    [7] 张为, 李义天, 王秀英, 等. 透水结构促淤试验研究[J]. 四川大学学报(工程科学版), 2005, 37(6): 31−37. doi: 10.3969/j.issn.1009-3087.2005.06.007

    Zhang Wei, Li Yitian, Wang Xiuying, et al. Experimental study on deposition promotion of permeable structure[J]. Journal of Sichuan University (Engineering Science Edition), 2005, 37(6): 31−37. doi: 10.3969/j.issn.1009-3087.2005.06.007
    [8] 吴龙华, 周春天, 严忠民, 等. 架空率、杆件长宽比对四面六边透水框架群减速促淤效果的影响[J]. 水利水运工程学报, 2003(3): 74−77. doi: 10.3969/j.issn.1009-640X.2003.03.017

    Wu Longhua, Zhou Chuntian, Yan Zhongmin, et al. Effects of overhead ratio and pole’s length-width ratio on deceleration and accretion promotion of tetrahedron-like penetrating frames[J]. Hydro-Science and Engineering, 2003(3): 74−77. doi: 10.3969/j.issn.1009-640X.2003.03.017
    [9] 崔勇, 关长涛, 万荣, 等. 布设间距对人工鱼礁流场效应影响的数值模拟[J]. 海洋湖沼通报, 2011, 33(2): 59−65. doi: 10.3969/j.issn.1003-6482.2011.02.008

    Cui Yong, Guan Changtao, Wan Rong, et al. Numerical simulation on influence of disposal space on effects of flow field around artificial reefs[J]. Transactions of Oceanology and Limnology, 2011, 33(2): 59−65. doi: 10.3969/j.issn.1003-6482.2011.02.008
    [10] Harris L E. Submerged reef structures for habitat enhancement and shoreline erosion abatement[J]. Coastal Engineering Technical Note, 2001(9): 1–16.
    [11] Moreira J, Chapman M G, Underwood A J. Maintenance of chitons on seawalls using crevices on sandstone blocks as habitat in Sydney Harbour, Australia[J]. Journal of Experimental Marine Biology and Ecology, 2007, 347(1/2): 134−143.
    [12] Temmerman S, Meire P, Bouma T J, et al. Ecosystem-based coastal defence in the face of global change[J]. Nature, 2013, 504(7478): 79−83. doi: 10.1038/nature12859
    [13] 杨培思, 蔡德所, 莫崇勋. 基于FLOW-3D的竖缝式鱼道水力特性研究[J]. 广西大学学报(自然科学版), 2018, 43(4): 1675−1683.

    Yang Peisi, Cai Desuo, Mo Chongxun. Study on hydraulic characteristics of vertical-slot fishways based on FLOW3D[J]. Journal of Guangxi University (Natural Science Edition), 2018, 43(4): 1675−1683.
    [14] 侯勇俊, 熊烈, 何环庆, 等. 基于FLOW-3D的三维数值波流水槽的构建及应用研究[J]. 海洋科学, 2015, 39(9): 111−116. doi: 10.11759/hykx20140902003

    Hou Yongjun, Xiong Lie, He Huanqing, et al. Three-dimensional wave-current numerical model and application based on FLOW-3D[J]. Marine Sciences, 2015, 39(9): 111−116. doi: 10.11759/hykx20140902003
    [15] 王小明, 程永舟, 常留红, 等. 梯形透水潜坝三维水流特性的数值模拟[J]. 水利水电科技进展, 2017, 37(5): 51−56. doi: 10.3880/j.issn.1006-7647.2017.05.009

    Wang Xiaoming, Cheng Yongzhou, Chang Liuhong, et al. Numerical simulation of three-dimensional flow characteristics of trapezoidal permeable submerged dam[J]. Advances in Science and Technology of Water Resources, 2017, 37(5): 51−56. doi: 10.3880/j.issn.1006-7647.2017.05.009
    [16] Colby B R, Hembree C H. Computations of total sediment discharge, Niobrara river near Cody, Nebraska[J]. Science, 1954, 119(3097): 657−658. doi: 10.1126/science.119.3097.657.b
    [17] Van Rijn L C. Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas[M]. Amsterdam: Aqua Publications, 1993.
    [18] Nielsen P, Teakle I A L. Turbulent diffusion of momentum and suspended particles: a finite-mixing-length theory[J]. Physics of Fluids, 2004, 16(7): 2342−2348. doi: 10.1063/1.1738413
    [19] Larsson P. Transport of PCBs from aquatic to terrestrial environments by emerging chironomids[J]. Environmental Pollution Series A, Ecological and Biological, 1984, 34(3): 283−289. doi: 10.1016/0143-1471(84)90123-5
    [20] 李亚, 陈海峰, 黄明毅, 等. 新型聚氨酯碎石空心块体生态堤结构构建[J]. 水运工程, 2020(11): 132−137. doi: 10.3969/j.issn.1002-4972.2020.11.023

    Li Ya, Chen Haifeng, Huang Mingyi, et al. Structure creation of new type of ecological embankment made of PPM hollow block[J]. Port & Waterway Engineering, 2020(11): 132−137. doi: 10.3969/j.issn.1002-4972.2020.11.023
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  342
  • HTML全文浏览量:  157
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-15
  • 修回日期:  2021-10-09
  • 网络出版日期:  2022-06-15
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回