留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分影像砂质海岸线精细提取及校正方法

尹航 戚洪帅 蔡锋 张弛 刘根 赵绍华 宋嘉诚 赵国润

尹航,戚洪帅,蔡锋,等. 高分影像砂质海岸线精细提取及校正方法[J]. 海洋学报,2022,44(4):143–152 doi: 10.12284/hyxb2022084
引用本文: 尹航,戚洪帅,蔡锋,等. 高分影像砂质海岸线精细提取及校正方法[J]. 海洋学报,2022,44(4):143–152 doi: 10.12284/hyxb2022084
Yin Hang,Qi Hongshuai,Cai Feng, et al. Sandy coastline fine extraction and correction method based on high resolution image[J]. Haiyang Xuebao,2022, 44(4):143–152 doi: 10.12284/hyxb2022084
Citation: Yin Hang,Qi Hongshuai,Cai Feng, et al. Sandy coastline fine extraction and correction method based on high resolution image[J]. Haiyang Xuebao,2022, 44(4):143–152 doi: 10.12284/hyxb2022084

高分影像砂质海岸线精细提取及校正方法

doi: 10.12284/hyxb2022084
基金项目: 国家自然科学基金(41930538,42076058);自然资源部第三海洋研究所基本科研业务费(2019026)。
详细信息
    作者简介:

    尹航(1996—),男,山东省济宁市人,主要从事海岸带遥感观测研究。E-mail: yhcomyo@163.com

    通讯作者:

    戚洪帅(1980—),男,山东省日照市人,研究员,主要从事海岸动力地貌研究。E-mail: qihongshuai@tio.org.cn

  • 中图分类号: P737.1;TP79

Sandy coastline fine extraction and correction method based on high resolution image

  • 摘要: 通过遥感影像稳定获取大范围、连续性海岸线数据,是开展海岸带研究的重要手段之一。针对传统边缘检测算法处理高分辨率遥感影像存在的噪声敏感性、阈值不稳定性等问题,引入一种强鲁棒性的结构森林边缘检测(Strected Forests Edge Detection, SE)算法,对海口市西海岸砂质岸线进行识别,并提出基于Bruun-Dean平衡剖面模式建立拟合剖面模型的潮位校正新方法,结合实测数据对提取结果进行了精度评估和误差分析,最终提取得到了精细海岸线数据。研究表明,SE算法检测所得水边线结果清晰细腻,对比Roberts算子、Canny算子、LoG算子等传统边缘检测算子法更加精准高效,适用于高分遥感影像海岸线提取研究;针对砂质岸线的潮位校正,基于RTK实测剖面数据和拟合剖面模式建立的拟合剖面模型,克服了传统线性模型误差较大的问题,提升了海岸线校正的精度和可行性;基于实测岸线,使用断面法对结果进行定量分析,验证所得提取岸线定位精度优于2.5 m。
  • 图  1  随机森林模型示意图

    Fig.  1  Schematic diagram of random forest model

    图  2  结构森林边缘检测算法边缘概率

    Fig.  2  Edge probability of strected forests edge detection

    图  3  线性潮位校正模型原理(修改自文献[27])

    Fig.  3  The principle of linear tide level correction model (modified from reference[27])

    图  4  拟合剖面潮位校正模型原理

    Fig.  4  The principle of the tide level correction model of the fitted profile

    图  5  研究区地理位置

    Fig.  5  Geographical location of the study area

    图  6  砂质岸线精细提取技术流程

    Fig.  6  Sandy shoreline extraction technology process

    图  7  边缘检测算法效果

    Fig.  7  Edge detection algorithm effect

    图  8  水边线检测结果

    Fig.  8  Detection results of land and water boundary lines

    图  9  潮位校正模型拟合结果对比

    Fig.  9  Comparison of fitting results of tide level correction models

    图  10  研究区海岸线提取结果

    Fig.  10  Extraction results of coastline in the study area

    图  11  断面及参考点布置图

    Fig.  11  Transects and reference points layout drawing

    图  12  提取岸线偏移量统计

    Fig.  12  Extract coastline offset statistics

    表  1  边缘检测算法质量评价结果

    Tab.  1  Quality evaluation results edge detection algorithm

    边缘检测算法帧速率/fps连续性(Cdr)/%F值/%阈值参数
    SE6092.774.3自适应
    Roberts1575.453.90~1
    Canny1583.561.10~1
    LoG1556.348.3自适应
    下载: 导出CSV

    表  2  拟合模型评价参数

    Tab.  2  Fitting model evaluation parameter

    模型误差平方和确定系数均方根误差
    剖面模型15.180.930.24
    线性模型24.410.780.32
    下载: 导出CSV
  • [1] 毋亭, 侯西勇. 海岸线变化研究综述[J]. 生态学报, 2016, 36(4): 1170−1182.

    Wu Ting, Hou Xiyong. Review of research on coastline changes[J]. Acta Ecologica Sinica, 2016, 36(4): 1170−1182.
    [2] Wahl T, Haigh I D, Woodworth P L, et al. Observed mean sea level changes around the North Sea coastline from 1800 to present[J]. Earth-Science Reviews, 2013, 124: 51−67. doi: 10.1016/j.earscirev.2013.05.003
    [3] 蔡锋, 苏贤泽, 曹惠美, 等. 华南砂质海滩的动力地貌分析[J]. 海洋学报, 2005, 27(2): 106−114.

    Cai Feng, Su Xianze, Cao Huimei, et al. Analysis on morphodynamics of sandy beaches in South China[J]. Haiyang Xuebao, 2005, 27(2): 106−114.
    [4] Vos K, Harley M D, Splinter K D, et al. Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery[J]. Coastal Engineering, 2019, 150: 160−174. doi: 10.1016/j.coastaleng.2019.04.004
    [5] 曹超, 朱铠, 蔡锋, 等. 厦门海岸类型变迁与经济发展的关联性研究[J]. 海洋开发与管理, 2021, 38(4): 69−74. doi: 10.3969/j.issn.1005-9857.2021.04.010

    Cao Chao, Zhu Kai, Cai Feng, et al. The relative of coastal change characteristic and economic development in Xiamen[J]. Ocean Development and Management, 2021, 38(4): 69−74. doi: 10.3969/j.issn.1005-9857.2021.04.010
    [6] 吴一全, 刘林忠. 遥感影像的海岸线自动提取方法研究进展[J]. 遥感学报, 2019, 23(4): 582−602.

    Wu Yiquan, Liu Linzhong. Research progress on methods of automatic coastline extraction based on remote sensing images[J]. Journal of Remote Sensing, 2019, 23(4): 582−602.
    [7] 刘善伟, 张杰, 马毅, 等. 遥感与DEM相结合的海岸线高精度提取方法[J]. 遥感技术与应用, 2011, 26(5): 613−618. doi: 10.11873/j.issn.1004-0323.2011.5.613

    Liu Shanwei, Zhang Jie, Ma Yi, et al. Coastline extraction method based on remote sensing and DEM[J]. Remote Sensing Technology and Application, 2011, 26(5): 613−618. doi: 10.11873/j.issn.1004-0323.2011.5.613
    [8] Descombes X, Moctezuma M, Maître H, et al. Coastline detection by a Markovian segmentation on SAR images[J]. Signal Processing, 1996, 55(1): 123−132. doi: 10.1016/S0165-1684(96)00125-9
    [9] Mcfeeters S K. The use of the normalized difference water index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7): 1425−1432. doi: 10.1080/01431169608948714
    [10] Bachofer F, Quénéhervé G, Zwiener T, et al. Comparative analysis of edge detection techniques for SAR images[J]. European Journal of Remote Sensing, 2016, 49(1): 205−224. doi: 10.5721/EuJRS20164912
    [11] Liu H, Jezek K C. Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods[J]. International Journal of Remote Sensing, 2004, 25(5): 937−958. doi: 10.1080/0143116031000139890
    [12] 张华国, 郭艳霞, 黄韦艮, 等. 1986年以来杭州湾围垦淤涨状况卫星遥感调查[J]. 国土资源遥感, 2005(2): 50−54.

    Zhang Huaguo, Guo Yanxia, Huang Weigen, et al. A remote sensing investigation of inning and silting in Hangzhou Bay since 1986[J]. Remote Sensing for Land & Resources, 2005(2): 50−54.
    [13] 贾明明, 刘殿伟, 王宗明, 等. 面向对象方法和多源遥感数据的杭州湾海岸线提取分析[J]. 地球信息科学学报, 2013, 15(2): 262−269. doi: 10.3724/SP.J.1047.2013.001262

    Jia Mingming, Liu Dianwei, Wang Zongming, et al. Coastline changes in Hangzhou Bay based on object-oriented method using multi-source remote sensing data[J]. Journal of Geo-Information Science, 2013, 15(2): 262−269. doi: 10.3724/SP.J.1047.2013.001262
    [14] 詹雅婷, 朱利, 孙永华, 等. 海岸线遥感光谱角度−距离相似度生长模型自动化提取[J]. 遥感学报, 2017, 21(3): 458−469.

    Zhan Yating, Zhu Li, Sun Yonghua, et al. Automatic extraction of coastline via spectral angle-distance similarity growth model[J]. Journal of Remote Sensing, 2017, 21(3): 458−469.
    [15] 谢明鸿, 张亚飞, 付琨. 基于种子点增长的SAR图像海岸线自动提取算法[J]. 中国科学院研究生院学报, 2007, 24(1): 93−98.

    Xie Minghong, Zhang Yafei, Fu Kun. Algorithm of detection coastline from SAR images based on seeds growing[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2007, 24(1): 93−98.
    [16] Toure S, Diop O, Kpalma K, et al. Shoreline detection using optical remote sensing: a review[J]. ISPRS International Journal of Geo-Information, 2019, 8(2): 75. doi: 10.3390/ijgi8020075
    [17] 刘晓莉, 范玉茹. 常用边缘检测算法在不同影像海岸线中提取比较研究[J]. 测绘与空间地理信息, 2014, 37(11): 149−151. doi: 10.3969/j.issn.1672-5867.2014.11.045

    Liu Xiaoli, Fan Yuru. Study on comparison of common edge detection algorithms extraction in different image coastline[J]. Geomatics & Spatial Information Technology, 2014, 37(11): 149−151. doi: 10.3969/j.issn.1672-5867.2014.11.045
    [18] 于杰, 杜飞雁, 陈国宝, 等. 基于遥感技术的大亚湾海岸线的变迁研究[J]. 遥感技术与应用, 2009, 24(4): 512−516. doi: 10.11873/j.issn.1004-0323.2009.4.512

    Yu Jie, Du Feiyan, Chen Guobao, et al. Research on coastline change of daya bay using remote sensing technology[J]. Remote Sensing Technology and Application, 2009, 24(4): 512−516. doi: 10.11873/j.issn.1004-0323.2009.4.512
    [19] Zhao Long, Fan Ling, Wang Chao, et al. A non-supervised method for shoreline extraction using high resolution SAR image[C]//Proceedings of 2012 International Conference on Computer Vision in Remote Sensing. Xiamen: IEEE, 2012: 317−322.
    [20] 蒋科迪, 殷勇, 范开桂, 等. 基于Canny算子的南通江海岸线研究[J]. 测绘通报, 2019(10): 83−88.

    Jiang Kedi, Yin Yong, Fan Kaigui, et al. Study on nantong coastlines based on Canny operator[J]. Bulletin of Surveying and Mapping, 2019(10): 83−88.
    [21] Bouchahma M, Yan Wanglin. Monitoring shoreline change on Djerba Island using GIS and multi-temporal satellite data[J]. Arabian Journal of Geosciences, 2014, 7(9): 3705−3713. doi: 10.1007/s12517-013-1052-9
    [22] Bachofer F, Quénéhervé G, Märker M. The delineation of paleo-shorelines in the lake manyara basin using TerraSAR-X data[J]. Remote Sensing, 2014, 6(3): 2195−2212. doi: 10.3390/rs6032195
    [23] Kass M, Witkin A, Terzopoulos D. Snakes: active contour models[J]. International Journal of Computer Vision, 1988, 1(4): 321−331. doi: 10.1007/BF00133570
    [24] De Laurentiis R, Dellepiane S G, Bo G. Texture features analysis for coastline extraction in remotely sensed images[C]//Proceedings of SPIE 4541, Image and Signal Processing for Remote Sensing VII. Toulouse, France: SPIE, 2002.
    [25] García-Rubio G, Huntley D, Russell P. Evaluating shoreline identification using optical satellite images[J]. Marine Geology, 2015, 359: 96−105. doi: 10.1016/j.margeo.2014.11.002
    [26] 张旭凯, 张霞, 杨邦会, 等. 结合海岸类型和潮位校正的海岸线遥感提取[J]. 国土资源遥感, 2013, 25(4): 91−97.

    Zhang Xukai, Zhang Xia, Yang Banghui, et al. Coastline extraction using remote sensing based on coastal type and tidal correction[J]. Remote Sensing for Land & Resources, 2013, 25(4): 91−97.
    [27] Xu Hanqiu. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(14): 3025−3033. doi: 10.1080/01431160600589179
    [28] 梁立, 刘庆生, 刘高焕, 等. 基于遥感影像的海岸线提取方法综述[J]. 地球信息科学学报, 2018, 20(12): 1745−1755. doi: 10.12082/dqxxkx.2018.180152

    Liang Li, Liu Qingsheng, Liu Gaohuan, et al. Review of coastline extraction methods based on remote sensing images[J]. Journal of Geo-Information Science, 2018, 20(12): 1745−1755. doi: 10.12082/dqxxkx.2018.180152
    [29] 马小峰, 赵冬至, 张丰收, 等. 海岸线卫星遥感提取方法研究进展[J]. 遥感技术与应用, 2007, 22(4): 575−580. doi: 10.3969/j.issn.1004-0323.2007.04.017

    Ma Xiaofeng, Zhao Dongzhi, Zhang Fengshou, et al. An overview of means of withdrawing coastline by remote sensing[J]. Remote Sensing Technology and Application, 2007, 22(4): 575−580. doi: 10.3969/j.issn.1004-0323.2007.04.017
    [30] Stockdon H F, Sallenger Jr A H, List J H, et al. Estimation of shoreline position and change using airborne topographic LIDAR data[J]. Journal of Coastal Research, 2002, 18(3): 502−513.
    [31] 陈子燊. 海滩剖面形态与地形动态研究的进展[J]. 海洋通报, 1997, 16(1): 86−91.

    Chen Zishen. Progress in studies on the shapes and dynamics of beach profiles[J]. Marine Science Bulletin, 1997, 16(1): 86−91.
    [32] Dollár P, Zitnick C L. Fast edge detection using structured forests[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(8): 1558−1570. doi: 10.1109/TPAMI.2014.2377715
    [33] Ho Tin Kam. Random decision forests[C]//Proceedings of 3rd International Conference on Document Analysis and Recognition. [S.l.]: [s.n.], 1995, 278−282.
    [34] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5−32. doi: 10.1023/A:1010933404324
    [35] 李翠锦, 瞿中. 基于深度学习的图像边缘检测算法综述[J]. 计算机应用, 2020, 40(11): 3280−3288.

    Li Cuijin, Qu Zhong. Review of image edge detection algorithms based on deep learning[J]. Journal of Computer Applications, 2020, 40(11): 3280−3288.
    [36] Bruun P. Coast erosion and the development of beach profiles[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1954, 54.
    [37] Dean R G. Equilibrium beach profile: characteristics and application[J]. Journal of Coastal Research, 1991, 7(1): 53−84.
    [38] Dolan R, Hayden B P, Felder W. Systematic variations in inshore bathymetry[J]. The Journal of Geology, 1977, 85(2): 129−141. doi: 10.1086/628281
    [39] Dean R G. Beach Nourishment: Theory and Practice[M]. Cai Feng, Cao Huimei, Liu Jianhui, trans. Beijing: China Ocean Press, 2010.
    [40] 王红平, 刘修国, 罗红霞, 等. 基于RPC模型的IRS-P5影像正射校正[J]. 地球科学——中国地质大学学报, 2010, 35(3): 485−489. doi: 10.3799/dqkx.2010.061

    Wang Hongping, Liu Xiuguo, Luo Hongxia, et al. IRS-P5 satellite image ortho corrections using RPC model[J]. Earth Science—Journal of China University of Geosciences, 2010, 35(3): 485−489. doi: 10.3799/dqkx.2010.061
    [41] 姜红艳, 邢立新, 梁立恒, 等. PanSharpening自动融合算法及应用研究[J]. 测绘与空间地理信息, 2008, 31(5): 73−75,78. doi: 10.3969/j.issn.1672-5867.2008.05.021

    Jiang Hongyan, Xing Lixin, Liang Liheng, et al. Study on PanSharpening auto-fusion arithmetic and application[J]. Geomatics & Spatial Information Technology, 2008, 31(5): 73−75,78. doi: 10.3969/j.issn.1672-5867.2008.05.021
    [42] Huang Y J, Powers R, Montelione G T. Protein NMR recall, precision, and F-measure scores (RPF scores): structure quality assessment measures based on information retrieval statistics[J]. Journal of the American Chemical Society, 2005, 127(6): 1665−1674. doi: 10.1021/ja047109h
    [43] Moore B D. Beach profile evolution in response to changes in water level and wave height[D]. Newark: University of Delaware, 1982.
    [44] Dean R G . Coastal sediment processes: Toward engineering solutions[C]//Conference on Coastal Sediments, [S.l.]: [s.n.], 1987.
    [45] Zhou Yong, Zhang Dong, Cutler M E J, et al. Estimating muddy intertidal flat slopes under varied coastal morphology using sequential satellite data and spatial analysis[J]. Estuarine, Coastal and Shelf Science, 2021, 251: 107183. doi: 10.1016/j.ecss.2021.107183
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  473
  • HTML全文浏览量:  142
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-19
  • 修回日期:  2021-08-27
  • 刊出日期:  2022-04-14

目录

    /

    返回文章
    返回