留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

冲绳海槽沉积物孔隙水地球化学特征及其指示意义

孙呈慧 窦衍光 赵京涛 孙治雷 白凤龙 蔡峰 李清 翟滨 王利波 邹亮

孙呈慧,窦衍光,赵京涛,等. 冲绳海槽沉积物孔隙水地球化学特征及其指示意义[J]. 海洋学报,2022,44(5):102–112 doi: 10.12284/hyxb2022081
引用本文: 孙呈慧,窦衍光,赵京涛,等. 冲绳海槽沉积物孔隙水地球化学特征及其指示意义[J]. 海洋学报,2022,44(5):102–112 doi: 10.12284/hyxb2022081
Sun Chenghui,Dou Yanguang,Zhao Jingtao, et al. Geochemical characteristics and indicative significance of pore water in the sediments of Okinawa Trough[J]. Haiyang Xuebao,2022, 44(5):102–112 doi: 10.12284/hyxb2022081
Citation: Sun Chenghui,Dou Yanguang,Zhao Jingtao, et al. Geochemical characteristics and indicative significance of pore water in the sediments of Okinawa Trough[J]. Haiyang Xuebao,2022, 44(5):102–112 doi: 10.12284/hyxb2022081

冲绳海槽沉积物孔隙水地球化学特征及其指示意义

doi: 10.12284/hyxb2022081
基金项目: 国家自然科学基金(41776077);国家海洋局国际合作项目“亚洲大陆边缘的古海洋与古地理演化”(GASI GEOGEO04);中国地质调查局地质调查专项(DD20190205,DD20221710)
详细信息
    作者简介:

    孙呈慧(1998-),女,山东省青岛市人,主要从事海洋地质研究。E-mail: 1023413289@qq.com

    通讯作者:

    窦衍光,男,研究员,主要从事海洋沉积地球化学研究。 E-mail: douyangaung@gmail.com

  • 中图分类号: P736.4

Geochemical characteristics and indicative significance of pore water in the sediments of Okinawa Trough

  • 摘要: 通过对东海外陆坡–冲绳海槽GSW1孔沉积物孔隙水δ13C、δ18O、δ11B、δ37Cl同位素和Cl${\rm{SO}}_4^{2-} $、K+、Na+等离子指标的分析,探讨了沉积物早期成岩作用、流体来源、迁移和氧化环境的变化。研究发现,GSW1孔孔隙水溶解无机碳主要来自海水和有机质,${\rm{SO}}_4^{2-} $浓度随深度下降比较平缓,Cl浓度远低于海水,该孔表层沉积物中硫酸盐消耗主要由有机质硫酸盐还原作用(OSR)所控制,甲烷厌氧氧化作用(AOM)发生在4 m以下更深的层位。OSR产生的H2S向上扩散富集并被氧化,是导致GSW1孔110~360 cm处 ${\rm{SO}}_4^{2-} $浓度未明显下降的主要因素。孔隙水${\rm{SO}}_4^{2-} $浓度整体随着深度增加呈减小的趋势,表明GSW1孔沉积环境由氧化、次氧化环境逐渐转变为还原环境。δ11B、δ37Cl值垂向变化波动较大,一方面受到早期成岩阶段有机质降解的影响,也可能与孔隙流体扩散以及沉积物/孔隙水相互作用有关。
  • 图  1  东海陆架–冲绳海槽环流体系和GSW1孔位置[36]

    Fig.  1  Circulation system of the East China Sea outer Slope-Okinawa Trough and core GSW1 location[36]

    图  2  GSW1孔沉积物孔隙水离子垂向变化

    Fig.  2  Ionvertical changes of pore water in the sediments of core GSW1

    图  3  GSW1孔沉积物孔隙水硼、氯、氢、氧、碳同位素垂向变化

    Fig.  3  Vertical changes of boron, chlorine, hydrogen, oxygen, and carbon isotope in the pore water of core GSW1 sediments

    图  4  GSW1孔沉积物孔隙水中碳氧同位素组成的相关性

    Fig.  4  Correlation between carbon isotope and oxygen isotope in the pore water of core GSW1 sediments

  • [1] Chester R. Marine Geochemistry[M]. 2nd ed. Netherlands: Springer, 1990: 4−5.
    [2] Hoefs J. 稳定同位素地球化学[M]. 北京: 海洋出版社, 2002: 144-145.

    Hoefs J. Stable Isotope Geochemistry[M]. Beijing: China Ocean Press, 2002: 144−145.
    [3] Berner R A. Early Diagenesis: A Theoretical Approach[M]. New Jersey: Princeton University Press, 1980.
    [4] Beck M, Dellwig O, Schnetger B, et al. Cycling of trace metals (Mn, Fe, Mo, U, V, Cr) in deep pore waters of intertidal flat sediments[J]. Geochimica et Cosmochimica Acta, 2008, 72(12): 2822−2840. doi: 10.1016/j.gca.2008.04.013
    [5] Fiket Ž, Fiket T, Ivanić M, et al. Pore water geochemistry and diagenesis of estuary sediments—an example of the Zrmanja River Estuary (Adriatic coast, Croatia)[J]. Journal of Soils and Sediments, 2019, 19(4): 2048−2060. doi: 10.1007/s11368-018-2179-9
    [6] Bianchi T S. Geochemistry of Marine Sediments[M]. Princeton: Princeton University Press, 2006.
    [7] Wang Xiaojing, Li Li, Liu Jihua, et al. Early diagenesis of redox-sensitive trace metals in the northern Okinawa Trough[J]. Acta Oceanologica Sinica, 2019, 38(12): 14−25. doi: 10.1007/s13131-019-1512-5
    [8] Chatterjee S, Dickens G R, Bhatnagar G, et al. Pore water sulfate, alkalinity, and carbon isotope profiles in shallow sediment above marine gas hydrate systems: a numerical modeling perspective[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B9): B09103.
    [9] Treude T, Krause S, Maltby J, et al. Sulfate reduction and methane oxidation activity below the sulfate-methane transition zone in Alaskan Beaufort Sea continental margin sediments: implications for deep sulfur cycling[J]. Geochimica et Cosmochimica Acta, 2014, 144: 217−237. doi: 10.1016/j.gca.2014.08.018
    [10] Pellerin A, Antler G, Røy H, et al. The sulfur cycle below the sulfate-methane transition of marine sediments[J]. Geochimica et Cosmochimica Acta, 2018, 239: 74−89. doi: 10.1016/j.gca.2018.07.027
    [11] Zindorf M, März C, Wagner T, et al. Deep sulfate-methane-transition and sediment diagenesis in the Gulf of Alaska (IODP Site U1417)[J]. Marine Geology, 2019, 417: 105986. doi: 10.1016/j.margeo.2019.105986
    [12] Hu Yu, Feng Dong, Peckmann J, et al. The impact of diffusive transport of methane on pore-water and sediment geochemistry constrained by authigenic enrichments of carbon, sulfur, and trace elements: a case study from the Shenhu area of the South China Sea[J]. Chemical Geology, 2020, 553: 119805. doi: 10.1016/j.chemgeo.2020.119805
    [13] Hong W L, Pape T, Schmidt C, et al. Interactions between deep formation fluid and gas hydrate dynamics inferred from pore fluid geochemistry at active pockmarks of the Vestnesa Ridge, west Svalbard margin[J]. Marine and Petroleum Geology, 2021, 127: 104957. doi: 10.1016/j.marpetgeo.2021.104957
    [14] Hu Yu, Feng Dong, Liang Qianyong, et al. Impact of anaerobic oxidation of methane on the geochemical cycle of redox-sensitive elements at cold-seep sites of the northern South China Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 84−94. doi: 10.1016/j.dsr2.2015.06.012
    [15] Feng Junxi, Yang Shengxiong, Liang Jinqiang, et al. Methane seepage inferred from the porewater geochemistry of shallow sediments in the Beikang Basin of the southern South China Sea[J]. Journal of Asian Earth Sciences, 2018, 168: 77−86. doi: 10.1016/j.jseaes.2018.02.005
    [16] Liu Shuangquan, Peng Xiaotong. Organic matter diagenesis in hadal setting: insights from the pore-water geochemistry of the Mariana Trench sediments[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2019, 147: 22−31. doi: 10.1016/j.dsr.2019.03.011
    [17] Hüpers A, Kasemann S A, Kopf A J, et al. Fluid flow and water-rock interaction across the active Nankai Trough subduction zone forearc revealed by boron isotope geochemistry[J]. Geochimica et Cosmochimica Acta, 2016, 193: 100−118. doi: 10.1016/j.gca.2016.08.014
    [18] Xu Cuiling, Wu Nengyou, Sun Zhilei, et al. Methane seepage inferred from pore water geochemistry in shallow sediments in the western slope of the mid-Okinawa Trough[J]. Marine and Petroleum Geology, 2018, 98: 306−315. doi: 10.1016/j.marpetgeo.2018.08.021
    [19] Xu Cuiling, Wu Nengyou, Sun Zhilei, et al. Assessing methane cycling in the seep sediments of the mid-Okinawa Trough: insights from pore-water geochemistry and numerical modeling[J]. Ore Geology Reviews, 2021, 129: 103909. doi: 10.1016/j.oregeorev.2020.103909
    [20] Sun Zhilei, Wu Nengyou, Cao Hong, et al. Hydrothermal metal supplies enhance the benthic methane filter in oceans: an example from the Okinawa Trough[J]. Chemical Geology, 2019, 525: 190−209. doi: 10.1016/j.chemgeo.2019.07.025
    [21] Cao Hong, Sun Zhilei, Wu Nengyou, et al. Mineralogical and geochemical records of seafloor cold seepage history in the northern Okinawa Trough, East China Sea[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 155: 103165. doi: 10.1016/j.dsr.2019.103165
    [22] Sun Zhilei, Wei Helong, Zhang Xunhua, et al. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 95: 37−53. doi: 10.1016/j.dsr.2014.10.005
    [23] Peng Xiaotong, Guo Zixiao, Chen Shun, et al. Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply[J]. Geochimica et Cosmochimica Acta, 2017, 205: 1−13. doi: 10.1016/j.gca.2017.02.010
    [24] Li Jiwei, Peng Xiaotong, Bai Shijie, et al. Biogeochemical processes controlling authigenic carbonate formation within the sediment column from the Okinawa Trough[J]. Geochimica et Cosmochimica Acta, 2018, 222: 363−382. doi: 10.1016/j.gca.2017.10.029
    [25] Xu Ning, Wu Shiguo, Shi Buqing, et al. Gas hydrate associated with mud diapirs in southern Okinawa Trough[J]. Marine and Petroleum Geology, 2009, 26(8): 1413−1418. doi: 10.1016/j.marpetgeo.2008.10.001
    [26] Xing Junhui, Jiang Xiaodian, Li Deyong. Seismic study of the mud diapir structures in the Okinawa Trough[J]. Geological Journal, 2016, 51(S1): 203−208.
    [27] Yin Ping, Berné S, Vagner P, et al. Mud volcanoes at the shelf margin of the East China Sea[J]. Marine Geology, 2003, 194(3/4): 135−149.
    [28] 李清, 蔡峰, 梁杰, 等. 东海冲绳海槽西部陆坡甲烷渗漏发育的孔隙水地球化学证据[J]. 中国科学: 地球科学, 2015, 58(6): 986−995. doi: 10.1007/s11430-014-5034-x

    Li Qing, Cai Feng, Liang Jie, et al. Geochemical constraints on the methane seep activity in western slope of the middle Okinawa Trough, the East China Sea[J]. Science China Earth Sciences, 2015, 58(6): 986−995. doi: 10.1007/s11430-014-5034-x
    [29] 刘喜停, 李安春, 马志鑫, 等. 沉积过程对自生黄铁矿硫同位素的约束[J]. 沉积学报, 2020, 38(1): 124−137.

    Liu Xiting, Li Anchun, Ma Zhixin, et al. Constraint of sedimentary processes on the sulfur isotope of authigenic pyrite[J]. Acta Sedimentologica Sinica, 2020, 38(1): 124−137.
    [30] Jørgensen B B, Beulig F, Egger M, et al. Organoclastic sulfate reduction in the sulfate-methane transition of marine sediments[J]. Geochimica et Cosmochimica Acta, 2019, 254: 231−245. doi: 10.1016/j.gca.2019.03.016
    [31] Sibuet J C, Deffontaines B, Hsu S K, et al. Okinawa Trough backarc basin: early tectonic and magmatic evolution[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30245−30267. doi: 10.1029/98JB01823
    [32] 余华. 冲绳海槽中部37 Cal ka BP以来的古气候和古海洋环境研究[D]. 青岛: 中国海洋大学, 2006.

    Yu Hua. Paleoclimate and paleoceanography study of the middle Okinawa Trough in the last 37 Cal ka BP[D]. Qingdao: Ocean University of China, 2006.
    [33] Yang Dezhou, Yin Baoshu, Liu Zhiliang, et al. Numerical study of the ocean circulation on the East China Sea shelf and a Kuroshio bottom branch northeast of Taiwan in summer[J]. Journal of Geophysical Research: Oceans, 2011, 116(C5): C05015.
    [34] Kao S J, Horng C S, Hsu S C, et al. Enhanced deepwater circulation and shift of sedimentary organic matter oxidation pathway in the Okinawa Trough since the Holocene[J]. Geophysical Research Letters, 2005, 32(15): L15609. doi: 10.1029/2005GL023139
    [35] Kao S J, Wu C R, Hsin Y C, et al. Effects of sea level change on the upstream Kuroshio Current through the Okinawa Trough[J]. Geophysical Research Letters, 2006, 33(16): L16604. doi: 10.1029/2006GL026822
    [36] Dou Yanguang, Yang Shouye, Li Chao, et al. Deepwater redox changes in the southern Okinawa Trough since the last glacial maximum[J]. Progress in Oceanography, 2015, 135: 77−90. doi: 10.1016/j.pocean.2015.04.007
    [37] 栾锡武, 秦蕴珊, 张训华, 等. 东海陆坡及相邻槽底天然气水合物的稳定域分析[J]. 地球物理学报, 2003, 46(4): 467−475. doi: 10.3321/j.issn:0001-5733.2003.04.007

    Luan Xiwu, Qin Yunshan, Zhang Xunhua, et al. The stability zone of gas hydrate in the slope of East China Sea and neighboring trough basin area[J]. Chinese Journal of Geophysics, 2003, 46(4): 467−475. doi: 10.3321/j.issn:0001-5733.2003.04.007
    [38] 栾锡武, 鲁银涛, 赵克斌, 等. 东海陆坡及邻近槽底天然气水合物成藏条件分析及前景[J]. 现代地质, 2008, 22(3): 342−355. doi: 10.3969/j.issn.1000-8527.2008.03.002

    Luan Xiwu, Lu Yintao, Zhao Kebin, et al. Geological factors for the development and newly advances in exploration of gas hydrate in East China Sea slope and Okinawa Trough[J]. Geoscience, 2008, 22(3): 342−355. doi: 10.3969/j.issn.1000-8527.2008.03.002
    [39] 李清, 蔡峰, 闫桂京, 等. 东海冲绳海槽泥火山发育区甲烷气体来源研究[J]. 海洋地质前沿, 2020, 36(9): 79−86.

    Li Qing, Cai Feng, Yan Guijing, et al. Origin of pore water methane recovered from mud volcanos in the Okinawa Trough[J]. Marine Geology Frontiers, 2020, 36(9): 79−86.
    [40] Li Qing, Cai Feng, Yan Guijing, et al. Widespread methane seep activities along the western slope of the Okinawa Trough, East China Sea[J]. Acta Geologica Sinica (English Edition), 2017, 91(4): 1505−1506. doi: 10.1111/1755-6724.13383
    [41] 李超, 程猛, Algeo T J, 等. 早期地球海洋水化学分带的理论预测[J]. 中国科学: 地球科学, 2015, 58(11): 1901−1909. doi: 10.1007/s11430-015-5190-7

    Li Chao, Cheng Meng, Algeo T J, et al. A theoretical prediction of chemical zonation in early oceans (>520 Ma)[J]. Science China Earth Sciences, 2015, 58(11): 1901−1909. doi: 10.1007/s11430-015-5190-7
    [42] Jørgensen B B, Kasten S. Sulfur cycling and methane oxidation[M]//Schulz H D, Zabel M. Marine Geochemistry. Berlin, Heidelberg: Springer, 2006: 271−309.
    [43] Canfield D E, Thamdrup B. Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away[J]. Geobiology, 2009, 7(4): 385−392. doi: 10.1111/j.1472-4669.2009.00214.x
    [44] Jørgensen B B. Mineralization of organic matter in the sea bed-the role of sulphate reduction[J]. Nature, 1982, 296(5858): 643−645. doi: 10.1038/296643a0
    [45] 朱茂旭, 史晓宁, 杨桂朋, 等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J]. 地球科学进展, 2011, 26(4): 355−364.

    Zhu Maoxu, Shi Xiaoning, Yang Guipeng, et al. Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments: an overview[J]. Advances in Earth Science, 2011, 26(4): 355−364.
    [46] Jørgensen B B, Weber A, Zopfi J. Sulfate reduction and anaerobic methane oxidation in Black Sea sediments[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2001, 48(9): 2097−2120. doi: 10.1016/S0967-0637(01)00007-3
    [47] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6804): 623−626. doi: 10.1038/35036572
    [48] Jørgensen B B, Böttcher M E, Lüschen H, et al. Anaerobic methane oxidation and a deep H2S sink generate isotopically heavy sulfides in Black Sea sediments[J]. Geochimica et Cosmochimica Acta, 2004, 68(9): 2095−2118. doi: 10.1016/j.gca.2003.07.017
    [49] Borowski W S, Paull C K, Ussler III W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: sensitivity to underlying methane and gas hydrates[J]. Marine Geology, 1999, 159(1/4): 131−154.
    [50] Borowski W S, Paull C K, Ussler III W. Marine pore-water sulfate profiles indicate in situ methane flux from underlying gas hydrate[J]. Geology, 1996, 24(7): 655−658. doi: 10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2
    [51] Dickens G R. Sulfate profiles and barium fronts in sediment on the Blake Ridge: present and past methane fluxes through a large gas hydrate reservoir[J]. Geochimica et Cosmochimica Acta, 2001, 65(4): 529−543. doi: 10.1016/S0016-7037(00)00556-1
    [52] Yang Tao, Jiang Shaoyong, Ge Lu, et al. Geochemical characteristics of pore water in shallow sediments from Shenhu area of South China Sea and their significance for gas hydrate occurrence[J]. Chinese Science Bulletin, 2010, 55(8): 752−760. doi: 10.1007/s11434-009-0312-2
    [53] Toki T, Tsunogai U, Gamo T, et al. Detection of low-chloride fluids beneath a cold seep field on the Nankai accretionary wedge off Kumano, south of Japan[J]. Earth and Planetary Science Letters, 2004, 228(1/2): 37−47.
    [54] Torres M E, Wallmann K, Tréhu A M, et al. Gas hydrate growth, methane transport, and chloride enrichment at the southern summit of hydrate ridge, Cascadia margin off Oregon[J]. Earth and Planetary Science Letters, 2004, 226(1/2): 225−241.
    [55] Luo Min, Chen Linying, Tong Hongpeng, et al. Gas hydrate occurrence inferred from dissolved Cl concentrations and δ18O values of pore water and dissolved sulfate in the shallow sediments of the pockmark field in southwestern Xisha Uplift, northern South China Sea[J]. Energies, 2014, 7(6): 3886−3899. doi: 10.3390/en7063886
    [56] Wallmann K, Riedel M, Hong Weili, et al. Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming[J]. Nature Communications, 2018, 9(1): 83. doi: 10.1038/s41467-017-02550-9
    [57] Yang Tao, Jiang Shaoyong, Yang Jinghong, et al. Dissolved inorganic carbon (DIC) and its carbon isotopic composition in sediment pore waters from the Shenhu area, northern South China Sea[J]. Journal of Oceanography, 2008, 64(2): 303−310. doi: 10.1007/s10872-008-0024-2
    [58] Chen Yifeng, Ussler III W, Haflidason H, et al. Sources of methane inferred from pore-water δ13C of dissolved inorganic carbon in Pockmark G11, offshore Mid-Norway[J]. Chemical Geology, 2010, 275(3/4): 127−138.
    [59] Luo Min, Chen Linying, Wang Shuhong, et al. Pockmark activity inferred from pore water geochemistry in shallow sediments of the pockmark field in southwestern Xisha Uplift, northwestern South China Sea[J]. Marine and Petroleum Geology, 2013, 48: 247−259. doi: 10.1016/j.marpetgeo.2013.08.018
    [60] Mazzini A, Ivanov M K, Parnell J, et al. Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation to seeping fluids[J]. Marine Geology, 2004, 212(1/4): 153−181.
    [61] Kastner M, Claypool G, Robertson G. Geochemical constraints on the origin of the pore fluids and gas hydrate distribution at Atwater Valley and Keathley Canyon, northern Gulf of Mexico[J]. Marine and Petroleum Geology, 2008, 25(9): 860−872. doi: 10.1016/j.marpetgeo.2008.01.022
    [62] 杨杰东, 徐士进. 同位素与全球环境变化[M]. 北京: 地质出版社, 2007: 62-64.

    Yang Jiedong, Xu Shijin. Isotopes and Global Environmental Changes[M]. Beijing: Geological Press, 2007: 62−64.
    [63] Kao S J, Roberts A P, Hsu S C, et al. Monsoon forcing, hydrodynamics of the Kuroshio Current, and tectonic effects on sedimentary carbon and sulfur cycling in the Okinawa Trough since 90 ka[J]. Geophysical Research Letters, 2006, 33(5): L05610.
    [64] Chuang Peichuan, Yang T F, Wallmann K, et al. Carbon isotope exchange during anaerobic oxidation of methane (AOM) in sediments of the northeastern South China Sea[J]. Geochimica et Cosmochimica Acta, 2019, 246: 138−155. doi: 10.1016/j.gca.2018.11.003
    [65] 吴能友, 张海啟, 杨胜雄, 等. 南海神狐海域天然气水合物成藏系统初探[J]. 天然气工业, 2007, 27(9): 1−6. doi: 10.3321/j.issn:1000-0976.2007.09.001

    Wu Nengyou, Zhang Haiqi, Yang Shengxiong, et al. Preliminary discussion on natural gas hydrate (NGH) reservoir system of Shenhu area, north slope of South China Sea[J]. Natural Gas Industry, 2007, 27(9): 1−6. doi: 10.3321/j.issn:1000-0976.2007.09.001
    [66] 陆红锋, 刘坚, 陈芳, 等. 南海东北部硫酸盐还原−甲烷厌氧氧化界面——海底强烈甲烷渗溢的记录[J]. 海洋地质与第四纪地质, 2012, 32(1): 93−98.

    Lu Hongfeng, Liu Jian, Chen Fang, et al. Shallow sulfate-methane interface in northeastern South China Sea: an indicator of strong methane seepage on seafloor[J]. Marine Geology & Quaternary Geology, 2012, 32(1): 93−98.
    [67] Suess E. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions[J]. International Journal of Earth Sciences, 2014, 103(7): 1889−1916. doi: 10.1007/s00531-014-1010-0
    [68] 杨克红, 于晓果, 初凤友, 等. 南海北部甲烷渗漏系统环境变化的碳、氧同位素记录[J]. 地球科学, 2016, 41(7): 1206−1215.

    Yang Kehong, Yu Xiaoguo, Chu Fengyou, et al. Environmental changes in methane seeps recorded by carbon and oxygen isotopes in the northern South China Sea[J]. Earth Science, 2016, 41(7): 1206−1215.
    [69] Antler G, Turchyn A V, Herut B, et al. A unique isotopic fingerprint of sulfate-driven anaerobic oxidation of methane[J]. Geology, 2015, 43(7): 619−622. doi: 10.1130/G36688.1
    [70] Antler G, Turchyn A V, Rennie V, et al. Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment[J]. Geochimica et Cosmochimica Acta, 2013, 118: 98−117. doi: 10.1016/j.gca.2013.05.005
    [71] Peckmann J, Thiel V. Carbon cycling at ancient methane-seeps[J]. Chemical Geology, 2004, 205(3/4): 443−467.
    [72] Snyder G T, Hiruta A, Matsumoto R, et al. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2007, 54(11/13): 1216−1239.
    [73] Peckmann J, Reimer A, Luth U, et al. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea[J]. Marine Geology, 2001, 177(1/2): 129−150.
    [74] Hensen C, Zabel M, Pfeifer K, et al. Control of sulfate pore-water profiles by sedimentary events and the significance of anaerobic oxidation of methane for the burial of sulfur in marine sediments[J]. Geochimica et Cosmochimica Acta, 2003, 67(14): 2631−2647. doi: 10.1016/S0016-7037(03)00199-6
    [75] Bowles M W, Samarkin V A, Bowles K M, et al. Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation[J]. Geochimica et Cosmochimica Acta, 2011, 75(2): 500−519. doi: 10.1016/j.gca.2010.09.043
    [76] Claypool G E, Milkov A V, Lee Y J, et al. Microbial methane generation and gas transport in shallow sediments of an accretionary complex, southern hydrate ridge (ODP Leg 204), offshore Oregon, USA[J]. Proceedings of the Ocean Drilling Program Scientific Results, 2006, 204: 1−52.
    [77] Fossing H, Ferdelman T G, Berg P. Sulfate reduction and methane oxidation in continental margin sediments influenced by irrigation (South-East Atlantic off Namibia)[J]. Geochimica et Cosmochimica Acta, 2000, 64(5): 897−910. doi: 10.1016/S0016-7037(99)00349-X
    [78] 刘晨晖. 海洋天然气水合物区硫酸盐−甲烷过渡带铁、硫组分和硫同位素地球化学研究[D]. 南京: 南京大学, 2016.

    Liu Chenhui. A study of iron and sulfur species and sulfur isotope geochemistry in marine sediments from gas hydrate-bearing regions: implications for sulfate-methane transition zone[D]. Nanjing: Nanjing University, 2016.
    [79] Aller R C, Madrid V, Chistoserdov A, et al. Unsteady diagenetic processes and sulfur biogeochemistry in tropical deltaic muds: implications for oceanic isotope cycles and the sedimentary record[J]. Geochimica et Cosmochimica Acta, 2010, 74(16): 4671−4692. doi: 10.1016/j.gca.2010.05.008
    [80] Aller R C. Sedimentary diagenesis, depositional environments, and benthic fluxes[M]//Holland H D, Turekian K K. Treatiseon Geochemistry. 2nd ed. Amsterdam: Elsevier, 2014: 293−334.
    [81] Yao Wensheng, Millero F J. Oxidation of hydrogen sulfide by hydrous Fe(III) oxides in seawater[J]. Marine Chemistry, 1996, 52(1): 1−16. doi: 10.1016/0304-4203(95)00072-0
    [82] Böttcher M E, Thamdrup B. Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO2[J]. Geochimica et Cosmochimica Acta, 2001, 65(10): 1573−1581. doi: 10.1016/S0016-7037(00)00622-0
    [83] Schippers A, Jørgensen B B. Oxidation of pyrite and iron sulfide by manganese dioxide in marine sediments[J]. Geochimica et Cosmochimica Acta, 2001, 65(6): 915−922. doi: 10.1016/S0016-7037(00)00589-5
    [84] Schippers A, Jørgensen B B. Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments[J]. Geochimica et Cosmochimica Acta, 2002, 66(1): 85−92. doi: 10.1016/S0016-7037(01)00745-1
    [85] Canfield D E, Thamdrup B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur[J]. Science, 1994, 266(5193): 1973−1975. doi: 10.1126/science.11540246
    [86] 窦衍光, 蔡峰, 李军, 等. 末次冰盛期−全新世东海陆坡滑塌沉积的地质年代与沉积学证据[J]. 第四纪研究, 2020, 40(3): 704−711. doi: 10.11928/j.issn.1001-7410.2020.03.09

    Dou Yanguang, Cai Feng, Li Jun, et al. Geological ages and sedimentology proofs of landslide layers from Last Glacial Maximum to Holocene in continental slope of the East China Sea[J]. Quaternary Sciences, 2020, 40(3): 704−711. doi: 10.11928/j.issn.1001-7410.2020.03.09
    [87] Deyhle A, Kopf A. Deep fluids and ancient pore waters at the backstop: stable isotope systematics (B, C, O) of mud-volcano deposits on the Mediterranean Ridge accretionary wedge[J]. Geology, 2001, 29(11): 1031−1034. doi: 10.1130/0091-7613(2001)029<1031:DFAAPW>2.0.CO;2
    [88] Teichert B M A, Torres M E, Bohrmann G, et al. Fluid sources, fluid pathways and diagenetic reactions across an accretionary prism revealed by Sr and B geochemistry[J]. Earth and Planetary Science Letters, 2005, 239(1/2): 106−121.
    [89] Chao H C, You Chenfeng, Wang B S, et al. Boron isotopic composition of mud volcano fluids: Implications for fluid migration in shallow subduction zones[J]. Earth and Planetary Science Letters, 2011, 305(1/2): 32−44.
    [90] Yamaoka K, Hong E, Ishikawa T, et al. Boron isotope geochemistry of vent fluids from arc/back-arc seafloor hydrothermal systems in the western Pacific[J]. Chemical Geology, 2015, 392: 9−18. doi: 10.1016/j.chemgeo.2014.11.009
    [91] Foster G L, Von Strandmann P A E, Rae J W B. Boron and magnesium isotopic composition of seawater[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(8): Q08015.
    [92] Spivack A J, Edmond J M. Boron isotope exchange between seawater and the oceanic crust[J]. Geochimica et Cosmochimica Acta, 1987, 51(5): 1033−1043. doi: 10.1016/0016-7037(87)90198-0
    [93] Spivack A J, Palmer M R, Edmond J M. The sedimentary cycle of the boron isotopes[J]. Geochimica et Cosmochimica Acta, 1987, 51(7): 1939−1949. doi: 10.1016/0016-7037(87)90183-9
    [94] Hemming N G, Hanson G N. Boron isotopic composition and concentration in modern marine carbonates[J]. Geochimica et Cosmochimica Acta, 1992, 56(1): 537−543. doi: 10.1016/0016-7037(92)90151-8
    [95] You C F, Spivack A J, Gieskes J M, et al. Boron contents and isotopic compositions in pore waters: a new approach to determine temperature induced artifacts—geochemical implications[J]. Marine Geology, 1996, 129(3/4): 351−361.
    [96] Brumsack H J, Zuleger E. Boron and boron isotopes in pore waters from ODP Leg 127, sea of Japan[J]. Earth and Planetary Science Letters, 1992, 113(3): 427−433. doi: 10.1016/0012-821X(92)90143-J
    [97] Magenheim A J, Spivack A J, Michael P J, et al. Chlorine stable isotope composition of the oceanic crust: implications for earth’s distribution of chlorine[J]. Earth and Planetary Science Letters, 1995, 131(3/4): 427−432.
    [98] Eggenkamp H G M, Kreulen R, Koster Van Groos A F, et al. Chlorine stable isotope fractionation in evaporites[J]. Geochimica et Cosmochimica Acta, 1995, 59(24): 5169−5175. doi: 10.1016/0016-7037(95)00353-3
    [99] Ransom B, Spivack A J, Kastner M. Stable Cl isotopes in subduction-zone pore waters: implications for fluid-rock reactions and the cycling of chlorine[J]. Geology, 1995, 23(8): 715−718. doi: 10.1130/0091-7613(1995)023<0715:SCIISZ>2.3.CO;2
    [100] Spivack A J, Kastner M, Ransom B. Elemental and isotopic chloride geochemistry and fluid flow in the Nankai Trough[J]. Geophysical Research Letters, 2002, 29(14): 6-1−6-4.
  • 加载中
图(4)
计量
  • 文章访问数:  539
  • HTML全文浏览量:  163
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-23
  • 修回日期:  2021-09-11
  • 网络出版日期:  2022-06-15
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回