留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于XBeach模型的深圳金沙湾裂流的数值模拟

胡鹏鹏 李志强 朱道恒 李高聪 苏倩欣

胡鹏鹏,李志强,朱道恒,等. 基于XBeach模型的深圳金沙湾裂流的数值模拟[J]. 海洋学报,2022,44(4):122–133 doi: 10.12284/hyxb2022076
引用本文: 胡鹏鹏,李志强,朱道恒,等. 基于XBeach模型的深圳金沙湾裂流的数值模拟[J]. 海洋学报,2022,44(4):122–133 doi: 10.12284/hyxb2022076
Hu Pengpeng,Li Zhiqiang,Zhu Daoheng, et al. Numerical simulation of rip current in Jinsha Bay, Shenzhen based on XBeach model[J]. Haiyang Xuebao,2022, 44(4):122–133 doi: 10.12284/hyxb2022076
Citation: Hu Pengpeng,Li Zhiqiang,Zhu Daoheng, et al. Numerical simulation of rip current in Jinsha Bay, Shenzhen based on XBeach model[J]. Haiyang Xuebao,2022, 44(4):122–133 doi: 10.12284/hyxb2022076

基于XBeach模型的深圳金沙湾裂流的数值模拟

doi: 10.12284/hyxb2022076
基金项目: 国家自然科学基金(42176167,41676079);广东海洋大学创新强校工程(Q18307)。
详细信息
    作者简介:

    胡鹏鹏(1998-),男,江西省南昌市人,主要从事海岸水动力及裂流研究。E-mail:pphu122@163.com

    通讯作者:

    李志强(1974-),男,博士,教授,研究方向为海滩过程、海岸工程环境。E-mail:qiangzl1974@163.com

  • 中图分类号: P731.21

Numerical simulation of rip current in Jinsha Bay, Shenzhen based on XBeach model

  • 摘要: 金沙湾是粤港澳大湾区重要的滨海旅游景点之一,深受世界各地游客的青睐。利用XBeach模型模拟金沙湾海滩的近岸环流,研究了不同模拟波况下裂流的发生情况。结果表明,金沙湾产生裂流很大程度上受到波高和地形的影响,在年平均有效波高波况下,金沙湾沿岸无明显裂流,当入射波高超过某个阈值后,沿岸裂流风险提高。裂流的强度和离岸距离与入射波高呈正相关,波向增加不利于海滩处裂流的产生,但有利于偏斜裂流的形成,金沙湾的海滩管理者应该提高对波浪状况的预警,以降低因裂流而导致的危害。另外,由于长岬角特征,金沙湾产生的偏斜裂流的补偿流来自岬角和海滩的沿岸流,这一点需要通过后续的现场观测进行对比验证。本文的工作可为使用XBeach模型对裂流进行模拟研究提供参考。
  • 图  1  金沙湾海滩位置

    Fig.  1  Location of the Jinsha Bay beach

    图  2  金沙湾波浪数据统计

    Fig.  2  Statistics of wave data in the Jinsha Bay

    图  3  金沙湾地形测深

    P1、P2为站位

    Fig.  3  Topographic bathymetries of the Jinsha Bay

    P1 and P2 are stations

    图  4  金沙湾5个跨岸地形剖面图

    Fig.  4  Five cross-shore topographic profiles of the Jinsha Bay

    图  5  波况1下的平均水位(a)、平均有效波高(b)和流速(c)

    Fig.  5  Average water level (a), average significant wave height (b), and velocity diagram (c) at wave condition 1

    图  6  波况2下的平均水位(a)、平均有效波高(b)和流速(c)

    Fig.  6  Average water level (a), average significant wave height (b), and velocity diagram (c) at wave condition 2

    图  7  图6中波高和流速放大图

    Fig.  7  Zoomed figure of wave height and velocity in Fig. 6

    图  8  波况3下的平均水位(a)、平均有效波高(b)和流速(c)

    Fig.  8  Average water level (a), average significant wave height (b), and velocity diagram (c) at wave condition 3

    图  9  波况4下的平均水位(a)、平均有效波高(b)和流速(c)

    Fig.  9  Average water level (a), average significant wave height (b), and velocity diagram (c) at wave condition 4

    图  10  不同波高下流速大于0.2 m/s的流速

    Fig.  10  Flow velocity diagram with velocity greater than 0.2 m/s under different wave heights

    图  11  图8中波高和流速放大图

    Fig.  11  Zoomed figure of wave height and velocity in Fig. 8

    图  12  图9中波高和流速放大图

    Fig.  12  Zoomed figure of wave height and velocity in Fig. 9

    图  13  不同θp下的流速

    Fig.  13  Flow velocity under different θp

    图  14  岬角处平均有效波高分布

    Fig.  14  Average significant wave height distribution at the headland

    图  15  P1和P2站点的流速时间序列

    Fig.  15  Time series of flow velocity at stations P1 and P2

    表  1  不同的模拟入射波条件

    Tab.  1  Different simulated incident wave conditions

    波况有效波高
    (Hs)/m
    峰值波周期
    (Tp)/s
    峰值波角
    (θp)/(°)
    波向
    10.1950S
    20.7550S
    30.5050S
    41.0050S
    50.75522.5SSW
    60.75562.5WSW
    下载: 导出CSV
  • [1] Long J W, Özkan-Haller H T. Offshore controls on nearshore rip currents[J]. Journal of Geophysical Research, 2005, 110(C12): C12007. doi: 10.1029/2005JC003018
    [2] Dalrymple R A. A mechanism for rip current generation on an open coast[J]. Journal of Geophysical Research, 1975, 80(24): 3485−3487. doi: 10.1029/JC080i024p03485
    [3] Dalrymple R A. Rip currents and their causes[J]. Coastal Engineering Proceedings, 1978, 1(16): 83. doi: 10.9753/icce.v16.83
    [4] Tang E C S, Dalrymple R A. Rip currents and wave groups[M]//Seymour R J. Nearshore Sediment Transport. Boston, MA: Springer, 1989: 205−230.
    [5] Shepard F P, Emery K O, La Fond E C. Rip currents: a process of geological importance[J]. The Journal of Geology, 1941, 49(4): 337−369. doi: 10.1086/624971
    [6] Inman D L, Tait R J, Nordstrom C E. Mixing in the surf zone[J]. Journal of Geophysical Research, 1971, 76(15): 3493−3514. doi: 10.1029/JC076i015p03493
    [7] Castelle B, Scott T, Brander R W, et al. Rip current types, circulation and hazard[J]. Earth-Science Reviews, 2016, 163: 1−21. doi: 10.1016/j.earscirev.2016.09.008
    [8] Li Zhiqiang. Rip current hazards in South China headland beaches[J]. Ocean & Coastal Management, 2016, 121: 23−32.
    [9] Kumar S V V A, Prasad K V S R. Rip current-related fatalities in India: a new predictive risk scale for forecasting rip currents[J]. Natural Hazards, 2014, 70(1): 313−335. doi: 10.1007/s11069-013-0812-x
    [10] Short A D. Australian rip systems—friend or foe?[J]. Journal of Coastal Research, 2007, SI 50: 7−11.
    [11] Brewster B C. Rip current misunderstandings[J]. Natural Hazards, 2010, 55(2): 161−162. doi: 10.1007/s11069-010-9527-4
    [12] Gensini V A, Ashley W S. An examination of rip current fatalities in the United States[J]. Natural Hazards, 2010, 54(1): 159−175. doi: 10.1007/s11069-009-9458-0
    [13] Shepard F P. Undertow, rip tide or “rip current”[J]. Science, 1936, 84(2173): 181−182. doi: 10.1126/science.84.2173.181
    [14] 孟凡昌, 李本霞. 裂流的研究综述[J]. 海洋预报, 2017, 34(1): 82−89. doi: 10.11737/j.issn.1003-0239.2017.01.011

    Meng Fanchang, Li Benxia. Review on the study of the rip current[J]. Marine Forecasts, 2017, 34(1): 82−89. doi: 10.11737/j.issn.1003-0239.2017.01.011
    [15] Longuet-Higgins M S, Stewart R W. Radiation stresses in water waves: a physical discussion, with applications[J]. Deep Sea Research and Oceanographic Abstracts, 1964, 11(4): 529−562. doi: 10.1016/0011-7471(64)90001-4
    [16] Reniers A J H M, MacMahan J H, Thornton E B, et al. Surf zone surface retention on a rip-channeled beach[J]. Journal of Geophysical Research, 2009, 114(C10): C10010. doi: 10.1029/2008JC005153
    [17] Reniers A J H M, MacMahan J H, Beron-Vera F J, et al. Rip-current pulses tied to Lagrangian coherent structures[J]. Geophysical Research Letters, 2010, 37(5): L05605.
    [18] Castelle B, Reniers A, MacMahan J. Bathymetric control of surf zone retention on a rip-channelled beach[J]. Ocean Dynamics, 2014, 64(8): 1221−1231. doi: 10.1007/s10236-014-0747-0
    [19] Scott T, Austin M, Masselink G, et al. Dynamics of rip currents associated with groynes—field measurements, modelling and implications for beach safety[J]. Coastal Engineering, 2016, 107: 53−69. doi: 10.1016/j.coastaleng.2015.09.013
    [20] 朱磊, 孙家文, 王宏, 等. 基于XBeach模型的离岸堤群防护效果评价指标[J]. 海洋环境科学, 2020, 39(5): 684−693. doi: 10.12111/j.mes.20190157

    Zhu Lei, Sun Jiawen, Wang Hong, et al. Evaluation index of protection effect of breakwaters based on XBeach model[J]. Marine Environmental Science, 2020, 39(5): 684−693. doi: 10.12111/j.mes.20190157
    [21] 刘硕. 基于物理模型实验和XBeach数值模拟的植被消浪研究[D]. 南京: 东南大学, 2019.

    Liu Shuo. Study on wave attenuation under vegetation based on physical experiment and XBeach model[D]. Nanjing: Southeast University, 2019.
    [22] 王宏. 考虑绕射的XBeach模型数值模拟研究[D]. 大连: 大连理工大学, 2019.

    Wang Hong. Numerical simulation of XBeach model with diffraction[D]. Dalian: Dalian University of Technology, 2019.
    [23] 房克照, 邹志利, 刘忠波. 沙坝海岸上裂流的数值模拟[J]. 水动力学研究与进展, 2011, 26A(4): 479−486.

    Fang Kezhao, Zou Zhili, Liu Zhongbo. Numerical simulation of rip current generated on a barred beach[J]. Chinese Journal of Hydrodynamics, 2011, 26A(4): 479−486.
    [24] 张尧, 刘强, 刘旭楠, 等. 韵律沙坝触发的裂流动态性研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1849−1857.

    Zhang Yao, Liu Qiang, Liu Xu’nan, et al. Variability of rip currents induced by rhythmic sandbars[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(9): 1849−1857.
    [25] Wang Hong, Zhu Shouxian, Li Xunqiang, et al. Numerical simulations of rip currents off arc-shaped coastlines[J]. Acta Oceanologica Sinica, 2018, 37(3): 21−30. doi: 10.1007/s13131-018-1197-1
    [26] Roelvink D, Reniers A, Van Dongeren A, et al. Modelling storm impacts on beaches, dunes and barrier islands[J]. Coastal Engineering, 2009, 56(11/12): 1133−1152.
    [27] Austin M J, Scott T M, Russell P E, et al. Rip current prediction: development, validation, and evaluation of an operational tool[J]. Journal of Coastal Research, 2013, 29(2): 283−300.
    [28] MacMahan J H, Reniers A J H M, Thornton E B, et al. Infragravity rip current pulsations[J]. Journal of Geophysical Research, 2004, 109(C1): C01033. doi: 10.1029/2003JC002068
    [29] Choi J, Yoon S B. Numerical simulation of nearshore circulation on field topography under random wave environment[J]. Coastal Engineering, 2011, 58(5): 395−408. doi: 10.1016/j.coastaleng.2010.12.002
    [30] Castelle B, McCarroll R J, Brander R W, et al. Modelling the alongshore variability of optimum rip current escape strategies on a multiple rip-channelled beach[J]. Natural Hazards, 2016, 81(1): 663−686. doi: 10.1007/s11069-015-2101-3
    [31] McCarroll R J, Castelle B, Brander R W, et al. Modelling rip current flow and bather escape strategies across a transverse bar and rip channel morphology[J]. Geomorphology, 2015, 246: 502−518. doi: 10.1016/j.geomorph.2015.06.041
    [32] Dalrymple R A, MacMahan J H, Reniers A J H M, et al. Rip currents[J]. Annual Review of Fluid Mechanics, 2011, 43: 551−581. doi: 10.1146/annurev-fluid-122109-160733
    [33] McCarroll R J, Brander R W, Turner I L, et al. Lagrangian observations of circulation on an embayed beach with headland rip currents[J]. Marine Geology, 2014, 355: 173−188. doi: 10.1016/j.margeo.2014.05.020
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  582
  • HTML全文浏览量:  191
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-29
  • 修回日期:  2021-10-20
  • 刊出日期:  2022-04-14

目录

    /

    返回文章
    返回