留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同破碎波气液混合区发展特征及其运动特性研究

许媛媛 梁书秀 薛庆仁 孙昭晨

许媛媛,梁书秀,薛庆仁,等. 不同破碎波气液混合区发展特征及其运动特性研究[J]. 海洋学报,2022,44(5):113–123 doi: 10.12284/hyxb2022075
引用本文: 许媛媛,梁书秀,薛庆仁,等. 不同破碎波气液混合区发展特征及其运动特性研究[J]. 海洋学报,2022,44(5):113–123 doi: 10.12284/hyxb2022075
Xu Yuanyuan,Liang Shuxiu,Xue Qingren, et al. Study on development characteristics of gas-liquid mixture zones and kinematics of breaking wave with different breaking type[J]. Haiyang Xuebao,2022, 44(5):113–123 doi: 10.12284/hyxb2022075
Citation: Xu Yuanyuan,Liang Shuxiu,Xue Qingren, et al. Study on development characteristics of gas-liquid mixture zones and kinematics of breaking wave with different breaking type[J]. Haiyang Xuebao,2022, 44(5):113–123 doi: 10.12284/hyxb2022075

不同破碎波气液混合区发展特征及其运动特性研究

doi: 10.12284/hyxb2022075
基金项目: 国家重点研发计划(2019YFC1407700); 国家自然科学基金(51779038)。
详细信息
    作者简介:

    许媛媛 (1989-),女,四川省南充市人,主要从事海洋环境动力学的试验和模拟研究。E-mail:xuyy_dl@mail.dlut.edu.cn

    通讯作者:

    梁书秀,女,教授,主要从事近海环境关键过程以及影响因素的模拟和实测研究。E-mail: sxliang@dlut.edu.cn

  • 中图分类号: P753

Study on development characteristics of gas-liquid mixture zones and kinematics of breaking wave with different breaking type

  • 摘要: 了解波浪破碎速度场的分布特性对于波浪破碎物理机制的研究极为重要,同时,对比研究不同类型破碎产生的气液混合区的演化特征有利于波浪白冠覆盖率模型的完善。在实验室水槽,生成了深水临界波、单次崩破波和单次卷破波,采用图像测速技术获取了波浪破碎图像、波面下水体和气液混合区速度场。结果表明,崩破波的水平向速度u和垂直向速度v在波峰前和波峰后的分布极为不对称,其水平向最大速度umax并不位于峰顶,而是在主导波峰前0.7$\eta_{\max} $处;卷破波的umax出现在波峰峰顶前端极小的区域内,且该区域与周围区域的速度梯度极大。崩破波和卷破波生成的气液混合区发展特征也存在差异:崩破波的umax值大、影响区域长、混合区厚度较小、各区域影响时间短;而卷破波的各项特征参数与崩破波形成对比。
  • 图  1  试验仪器在水槽中的布置

    Fig.  1  Wave tank and measurement locations

    图  2  粒子图像测速技术拍摄视场说明

    Fig.  2  Particle image velocimetry field of view

    图  3  粒子图像测速技术分析的临界波波峰区间速度场

    a. 水平向速度;b. 垂向速度,黑色矢量为合速度

    Fig.  3  Particle image velocimetry velocity field in wave crest area of critical wave

    a. Horizontal velocity; b. vertical velocity. The black vector is the absolute velocity

    图  4  临界波波峰区间,速度矢量平面图

    Fig.  4  $ \hat{u} $ vs $ \hat {v}$ for wave crest area of critical wave

    图  5  崩破波形成过程波峰区间速度场

    左列为水平向速度;右列为垂向速度,黑色矢量为合速度

    Fig.  5  Particle image velocimetry velocity field in wave crest area of spilling wave

    Left column represents horizontal velocity; right column represents vertical velocity. The black vector is the absolute velocity

    图  6  图 5b时刻波峰区间速度矢量平面图

    Fig.  6  $ \hat{u} $ vs $\hat{v} $ for wave crest area of spilling wave in Fig. 5b

    图  7  卷破波水舌入水前波峰区间速度场

    左列为水平向速度;右列为垂向速度。黑色矢量为合速度

    Fig.  7  Particle image velocimetry velocity field in wave crest area of plunging wave

    Left column represents horizontal velocity, right column represents vertical velocity. The black vector is the absolute velocity

    图  8  图 7b时刻,波峰区间速度矢量平面图

    Fig.  8  $ \hat{u} $ vs $ \hat{v}$ for wave crest area of plunging wave in Fig. 7b

    图  9  崩破波破碎过程

    Fig.  9  Breaking process for spilling wave

    图  10  卷破波破碎过程

    Fig.  10  Breaking process for plunging wave

    图  11  崩破导致混合区影响深度随时间的变化(左列)和混合区最大水平向速度与水体最大水平向速度的比较(右列)

    混合区最大水平向速度由BIV测量获得,水体最大水平向速度由PIV测量获得

    Fig.  11  Spilling wave, the thickness of mixed zone varies with time (left column) and the comparison of the maximum horizontal velocity $ \hat{u}_{\max}$ in mixed zone and the maximum horizontal velocity $ \hat{u}_{\max}$ in water body (right column)

    Maximum horizontal velocity $ \hat{u}_{\max}$ of the mixed zone is measured by BIV, maximum horizontal velocity $ \hat{u}_{\max}$ of the water body is measured by PIV

    图  12  卷破导致混合区影响深度随时间的变化(左列)和混合区最大水平向速度与水体最大水平向速度的比较(右列)

    混合区最大水平向速度由BIV测量获得,水体最大水平向速度由PIV测量获得

    Fig.  12  Plunging wave, the thickness of mixed zone varies with time (left column) and the comparison of the maximum horizontal velocity $ u_{ \max } $ in mixed zone and the maximum horizontal velocity $ u_{ \max } $ in water body (right column)

    Maximum horizontal velocity $ u_{ \max } $ of the mixed zone is measured by BIV, maximum horizontal velocity $ u_{ \max } $ of the water body is measured by PIV

    表  1  试验工况参数

    Tab.  1  Experimental conditions

    工况fpSinput$ \Delta f $γ破碎类型
    10.80.330.566.0临界波
    20.750.380.643.3崩破波
    30.750.351.463.3卷破波
    下载: 导出CSV

    表  2  不同破碎类型特征参数的对比

    Tab.  2  Comparison of characteristic parameters of different breaking types

    破碎
    类型
    极限状态运动
    特征参数
    气液混合区特征参数
    速度场分布$ u_{ \max } $总长度Lm总时长TmDmaxtmax$ u_{ \max } ^m$
    临界波对称0.66Cd
    崩破波极不对称0.84Cd1.15Ld1.86T0.75$ \eta_{\max}$0.6T1.5Cd
    卷破波不对称0.83Cd0.5Ld2.0T1.55$ \eta_{\max}$1.0T1.0Cd
    下载: 导出CSV
  • [1] Wanninkhof R, Asher W E, Ho D T, et al. Advances in quantifying air-sea gas exchange and environmental forcing[J]. Annual Review of Marine Science, 2009, 1: 213−244. doi: 10.1146/annurev.marine.010908.163742
    [2] Grue J, Clamond D, Huseby M, et al. Kinematics of extreme waves in deep water[J]. Applied Ocean Research, 2003, 25(6): 355−366. doi: 10.1016/j.apor.2004.03.001
    [3] Grue J, Kolaas J, Jensen A. Velocity fields in breaking-limited waves on finite depth[J]. European Journal of Mechanics-B/Fluids, 2014, 47: 97−107. doi: 10.1016/j.euromechflu.2014.03.014
    [4] Grue J, Jensen A. Experimental velocities and accelerations in very steep wave events in deep water[J]. European Journal of Mechanics-B/Fluids, 2006, 25(5): 554−564. doi: 10.1016/j.euromechflu.2006.03.006
    [5] Grue J, Jensen A. Orbital velocity and breaking in steep random gravity waves[J]. Journal of Geophysical Research: Oceans, 2012, 117(C7): C07013.
    [6] Lim H J, Chang Kuang’an, Huang Zhicheng, et al. Experimental study on plunging breaking waves in deep water[J]. Journal of Geophysical Research: Oceans, 2015, 120(3): 2007−2049. doi: 10.1002/2014JC010269
    [7] Na B, Chang Kuang’an, Huang Zhicheng, et al. Large-scale laboratory observation of flow properties in plunging breaking waves[J]. Coastal Engineering, 2018, 138: 66−79. doi: 10.1016/j.coastaleng.2018.04.002
    [8] 台兵, 马玉祥, 董国海, 等. 孤立卷破波传播演化特征分析[J]. 哈尔滨工程大学学报, 2021, 42(6): 778−784.

    Tai Bing, Ma Yuxiang, Dong Guohai, et al. Characteristics of propagation and evolution of plunging solitary waves[J]. Journal of Harbin Engineering University, 2021, 42(6): 778−784.
    [9] 龙晓警. 粒子图像测速(PIV)技术在水槽波浪中的研究[D]. 天津: 天津大学, 2009.

    Long Xiaojing. Particle image velocimetry investigation on waves in flume[D]. Tianjin: Tianjin University, 2009.
    [10] Gao Xiangyu, Dou Xiping, Gao Zhengrong, et al. Research of flow characteristics on spilling waves[J]. Procedia Engineering, 2015, 116: 64−70. doi: 10.1016/j.proeng.2015.08.265
    [11] 易婧. 卷破波作用下卷入气泡特性研究[D]. 长沙: 长沙理工大学, 2017.

    Yi Jing. Analysis on the characteristic of the bubble entrained by the plunging wave[D]. Changsha: Changsha University of Science & Technology, 2017.
    [12] 毕小奇. 基于PIV及BIV耦合的破碎波浪特性研究[D]. 大连: 大连理工大学, 2020.

    Bi Xiaoqi. The study on the evolution characteristics of breaking waves based on PIV and BIV coupling[D]. Dalian: Dalian University of Technology, 2020.
    [13] 梁书秀, 张怡辉, 孙昭晨. 深水波浪破碎时波浪演化特征实验研究[J]. 海洋工程, 2016, 34(1): 71−79,123.

    Liang Shuxiu, Zhang Yihui, Sun Zhaochen. Experimental study on the evolution characteristics of deep-water breaking waves[J]. The Ocean Engineering, 2016, 34(1): 71−79,123.
    [14] Barthelemy X, Banner M L, Peirson W L, et al. On a unified breaking onset threshold for gravity waves in deep and intermediate depth water[J]. Journal of Fluid Mechanics, 2018, 841: 463−488. doi: 10.1017/jfm.2018.93
    [15] Rapp R J, Melville W K. Laboratory measurements of deep-water breaking waves[J]. Philosophical Transactions of the Royal Society of London Series A—Mathematical Physical and Engineering Sciences, 1990, 331(1622): 735−800.
    [16] 华锋. 破碎波统计及应用研究[D]. 青岛: 中国科学院海洋研究所, 2005.

    Hua Feng. Study of breaking wave statistics and its application[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2005.
    [17] Xu Yuanyuan, Liang Shuxiu, Sun Zhaochen, et al. An experimental comparison of the velocities and energies of focused spilling waves in deep water[J]. Ocean Dynamics, 2020, 70(7): 863−877. doi: 10.1007/s10236-020-01369-1
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  156
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-01
  • 修回日期:  2021-10-24
  • 网络出版日期:  2022-06-15
  • 刊出日期:  2022-06-15

目录

    /

    返回文章
    返回