留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缢蛏糖原磷酸化酶基因多态性与糖原含量的关联分析

陈燕园 林志华 刘圣 姚韩韩 董迎辉

陈燕园,林志华,刘圣,等. 缢蛏糖原磷酸化酶基因多态性与糖原含量的关联分析[J]. 海洋学报,2022,44(2):77–83 doi: 10.12284/hyxb2022068
引用本文: 陈燕园,林志华,刘圣,等. 缢蛏糖原磷酸化酶基因多态性与糖原含量的关联分析[J]. 海洋学报,2022,44(2):77–83 doi: 10.12284/hyxb2022068
Chen Yanyuan,Lin Zhihua,Liu Sheng, et al. The association of single nucleotide polymorphisms of the glycogen phosphorylase gene with glycogen content in the razor clam Sinonovacula constricta[J]. Haiyang Xuebao,2022, 44(2):77–83 doi: 10.12284/hyxb2022068
Citation: Chen Yanyuan,Lin Zhihua,Liu Sheng, et al. The association of single nucleotide polymorphisms of the glycogen phosphorylase gene with glycogen content in the razor clam Sinonovacula constricta[J]. Haiyang Xuebao,2022, 44(2):77–83 doi: 10.12284/hyxb2022068

缢蛏糖原磷酸化酶基因多态性与糖原含量的关联分析

doi: 10.12284/hyxb2022068
基金项目: 国家重点研发计划“蓝色粮仓”科技创新课题(2018YFD0901405);浙江省农业新品种选育重大科技专项(2021C02069-7);国家现代贝类产业技术体系项目(CARS-49);国家海洋水产种质资源库项目;宁波市“科技创新2025”重大专项(2019B10005)。
详细信息
    作者简介:

    陈燕园(1994—),福建省漳州市人,研究方向为贝类分子遗传与育种。E-mail: 1304397861@qq.com

    通讯作者:

    姚韩韩,高级实验师,研究方向为贝类分子遗传与育种。E-mail: yaohanhan1020@126.com

  • 中图分类号: Q786;S917.4

The association of single nucleotide polymorphisms of the glycogen phosphorylase gene with glycogen content in the razor clam Sinonovacula constricta

  • 摘要: 为探究缢蛏糖原磷酸化酶基因(Sc-GPH)与糖原含量的关系,本研究克隆获得Sc-GPH cDNA全长,检测其在不同组织、不同月份的表达模式,并在Sc-GPH基因编码区筛选与糖原含量关联的SNP位点。结果表明,Sc-GPH cDNA全长为3 963 bp,开放阅读框为2 541 bp,编码846个氨基酸;氨基酸序列多重比对和系统发育树显示,缢蛏与欧洲大扇贝、虾夷扇贝、长牡蛎等贝类亲缘关系较近,而与哺乳类、甲壳类、昆虫类亲缘关系较远。实时荧光定量PCR结果显示,Sc-GPH在8个组织中均有表达,其中在外套膜和足中表达量最高(p<0.01),推测与其糖原存储能力有关;不同月份的缢蛏外套膜和足中,Sc-GPH在8月表达量最高,而此时糖原含量较低,说明Sc-GPH的表达可能受缢蛏生殖周期的影响。以缢蛏“甬乐1号”群体为实验材料,在Sc-GPH基因编码区筛选到4个与糖原含量相关SNP位点,其中c.930T>C位点在台州野生群体中得到进一步验证,该位点为高糖原缢蛏分子标记辅助选育提供了候选标记。
  • 图  1  缢蛏不同组织(A)和不同月份足和外套膜(B)的糖原含量变化

    1. 鳃;2. 闭壳肌;3. 足;4. 外套膜;5. 肝胰腺;6. 性腺;7. 水管;8. 唇瓣;A中不同小写字母代表差异极显著(p<0.01);B中同一组织不同字母代表差异极显著(p<0.01)

    Fig.  1  Changes of glycogen content in different tissues (A) and different months in foot and mantle (B) of Sinonovacula constricta

    1. Gill; 2. adductor muscle; 3. foot; 4. mantle; 5. hepatopancreas; 6. gonad; 7. siphon; 8. palp; different lowercases indicate extremely significant difference (p<0.01) in A; different letters marked on columns of the same tissue represent their extremely significant differences in data (p<0.01) in B

    图  2  缢蛏与其他物种GPH氨基酸序列系统进化分析

    进化树中各物种GPH氨基酸序列的GenBank登录号为:缢蛏(Sinonovacula constricta,MT125681);长牡蛎(Crassostrea gigas,CCN27372);欧洲大扇贝(Pecten maximus,XP_033734012);虾夷扇贝(Mizuhopecten yessoensis,OWF50424);克氏原螯虾(Procambarus clarki,AVN99053);凡纳滨对虾(Penaeus vannamei,QCY50320);日本对虾(Procambarus clarkii,BAJ23879);异色瓢虫(Harmonia axyridis,ASZ80181);黑腹果蝇(Drosophila melanogaster,NP_001027219);家蚕(Bombyx mori,ACB41088);甜菜夜蛾(Spodoptera exigua,ACN78408);亚洲玉米螟(Ostrinia furnacalis,AFO54708);智人(Homo sapiens,AAC18079);小家鼠(Mus musculus,AAG00588);马(Equus caballus,BAH22533);单峰驼(Camelus dromedarius,KAB1277008)

    Fig.  2  Neighbor-joining phylogenetic tree of GPH among Sinonovacula constricta and other species

    GenBank accession numbers of GPH sequences used for phylogenetic tree: Razor clam (Sinonovacula constricta, MT125681); Pacific oyster (Crassostrea gigas, CCN27372); European scallop (Pecten maximus, XP_033734012); Japanese scallop (Mizuhopecten yessoensis, OWF50424); Red swamp crayfish (Procambarus clarki, AVN99053); Whiteleg shrimp (Penaeus vannamei, QCY50320); Kuruma prawn (Penaeus japonicus, BAJ23879); Asian lady beetles (Harmonia axyridis, ASZ80181); Fruit fly (Drosophila melanogaster, NP_001027219); Domestic silkworm (Bombyx mori, ACB41088); Beet armyworm (Spodoptera exigua, ACN78408); Asiatic corn borer (Ostrinia furnacalis, AFO54708); Human (Homo sapiens, AAC18079); House mouse (Mus musculus, AAG00588); Horse (Equus caballus, BAH22533); Single hump camel (Camelus dromedarius, KAB1277008)

    图  3  Sc-GPH在缢蛏不同组织(A)和不同月份足和外套膜(B)的的表达特征

    1. 鳃;2. 闭壳肌;3. 足;4. 外套膜;5. 肝胰腺;6. 性腺;7. 水管;8. 唇瓣;A中不同小写字母代表差异极显著(p<0.01);B中同一组织不同字母代表差异极显著(p<0.01)

    Fig.  3  The expression characteristics of Sc-GPH in different tissues (A) and different months in foot and mantle (B)

    1. Gill; 2. adductor muscle; 3. foot; 4. mantle; 5. hepatopancreas; 6. gonad; 7. siphon; 8. palp; different lowercases indicate extremely significant difference(p<0.01)in A; different letters marked on columns of the same tissue represent their extremely significant differences in data (p<0.01)in B

    表  1  所用的引物及信息

    Tab.  1  The information of primers used in this experiment

    引物名称引物序列(5′-3′)用途
    H3 AGTGAACAGATCTCCACCGCAGGCA Sc-GPH 3′-RACE扩增
    H5 GCGGGATGACTTGAACCTACGGAT Sc-GPH 5′-RACE扩增
    18S-F TCGGTTCTATTGCGTTGGTTTT qPCR
    18S-R CAGTTGGCATCGTTTATGGTCA qPCR
    H-Q-F ATCTACAACTCCCTCCTCTACCA qPCR
    H-Q-R GGCACATCTTAGCCCAAAG qPCR
    H-S-F AAAGACATTCAATCGCCACCT SNP筛选
    H-S-R TTTCTGGATTTGGCTCACAACCC SNP筛选
    下载: 导出CSV

    表  2  缢蛏“甬乐1号”(YL1)和台州野生群体(TZ)Sc-GPH SNPs位点与糖原含量的相关性分析

    Tab.  2  Association of SNPs of Sc-GPH with glycogen content in YL1 and TZ of Sinonovacula constricta

    群体SNP位点基因型样本量/频率糖原含量/(mg·g−1)p
    YL1c.874C>TCC89/0.8954.6±30.30.047*
    CT11/0.1174.1±30.0
    c.930T>CTT49/0.4952.1±29.40.029*
    TC43/0.4357.9±28.4
    CC8/0.0878.6±34.7
    c.1133 T>CTT87/0.8753.6±29.20.023*
    TC13/0.1377.7±27.1
    c.1284 T>ATT65/0.6561.0±26.70.028*
    TA23/0.2356.8±37.7
    AA12/0.1233.1±1.97
    TZc.930T>CTT47/0.4773.9±22.50.047*
    TC40/0.480.7±23.2
    CC13/0.1386.1±15.0
      注:p值代表SNP位点与糖原含量的相关程度,*代差异显著(p<0.05)。
    下载: 导出CSV
  • [1] Greenberg C C, Jurczak M J, Danos A M, et al. Glycogen branches out: new perspectives on the role of glycogen metabolism in the integration of metabolic pathways[J]. American Journal of Physiology-Endocrinology and Metabolism, 2006, 291(1): E1−E8. doi: 10.1152/ajpendo.00652.2005
    [2] Berthelin C, Kellner K, Mathieu M. Storage metabolism in the Pacific oyster (Crassostrea gigas) in relation to summer mortalities and reproductive cycle (west coast of France)[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2000, 125(3): 359−369. doi: 10.1016/S0305-0491(99)00187-X
    [3] Liu Wenguang, Li Qi, Yuan Yundang, et al. Seasonal variations in reproductive activity and biochemical composition of the cockle Fulvia mutica (Reeve) from the eastern coast of China[J]. Journal of Shellfish Research, 2008, 27(2): 405−411. doi: 10.2983/0730-8000(2008)27[405:SVIRAA]2.0.CO;2
    [4] Park M S, Kang C K, Lee P Y. Reproductive cycle and biochemical composition of the ark shell Scapharca broughtonii (Schrenck) in a southern coastal bay of Korea[J]. Journal of Shellfish Research, 2001, 20(1): 177−184.
    [5] 闫红伟. 缢蛏 (Sinonovacula constricta) 和青蛤 (Cyclina sinensis) 繁殖生理学的研究[D]. 青岛: 中国海洋大学, 2009: 32−33

    Yan Hongwei. Reproductive physiology of Sinonovacula constricta and Cyclina sinensis [D]. Qingdao: Ocean University of China, 2009: 32−33.
    [6] Samain J F. Review and perspectives of physiological mechanisms underlying genetically-based resistance of the Pacific oyster Crassostrea gigas to summer mortality[J]. Aquatic Living Resources, 2011, 24(3): 227−236. doi: 10.1051/alr/2011144
    [7] 陈德慰, 苏键, 刘小玲, 等. 广西北部湾3种贝类中主要呈味物质的测定及呈味作用评价[J]. 食品科学, 2012, 33(10): 165−168.

    Chen Dewei, Su Jian, Liu Xiaoling, et al. Taste evaluation of non-volatile taste compounds in bivalve mollusks from Beibu gluf, Guangxi[J]. Food Science, 2012, 33(10): 165−168.
    [8] 李含. 缢蛏综合保活技术研究[D]. 福州: 福建农林大学, 2014: 37−41

    Li Han. The research of comprehensive keep-alive technology to Sinonovacula constricta[D]. Fuzhou: Fujian Agriculture and Forestry University, 2014: 37−41.
    [9] Palsamy P, Subramanian S. Modulatory effects of resveratrol on attenuating the key enzymes activities of carbohydrate metabolism in streptozotocin–nicotinamide-induced diabetic rats[J]. Chemico-Biological Interactions, 2009, 179(2/3): 356−362.
    [10] Cori C F, Cori G T. Mechanism of formation of hexosemonophosphate in muscle and isolation of a new phosphate ester[J]. Experimental Biology and Medicine, 1936, 34(5): 702−705. doi: 10.3181/00379727-34-8759P
    [11] Nakano K, Hwang P K, Fletterick R J. Complete cDNA sequence for rabbit muscle glycogen phosphorylase[J]. Federation of European Biochemical Societies, 1986, 204(2): 283−287. doi: 10.1016/0014-5793(86)80829-8
    [12] Bacca H, Huvet A, Fabioux C, et al. Molecular cloning and seasonal expression of oyster glycogen phosphorylase and glycogen synthase genes[J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 2005, 140(4): 635−646. doi: 10.1016/j.cbpc.2005.01.005
    [13] Zeng Zhen, Ni Jianbin, Ke Caihuan. Glycogen content relative to expression of glycogen phosphorylase (GPH) and hexokinase (HK) during the reproductive cycle in the Fujian oyster, Crassostrea angulata[J]. Acta Oceanologica Sinica, 2015, 34(6): 66−76. doi: 10.1007/s13131-015-0639-2
    [14] She Zhicai, Li Li, Qi Haigang, et al. Candidate gene polymorphisms and their association with glycogen content in the Pacific oyster Crassostrea gigas[J]. PLoS One, 2015, 10(5): e0124401. doi: 10.1371/journal.pone.0124401
    [15] 霍礼辉, 陈彩芳, 林志华, 等. 镉诱导缢蛏(Sinonovacula constricta)体内金属硫蛋白基因变化规律研究[J]. 海洋与湖沼, 2012, 43(4): 723−728. doi: 10.11693/hyhz201204006006

    Huo Lihui, Chen Caifang, Lin Zhihua, et al. The metallothionein gene expression in Sinonovacula constricta exposing to cadmium[J]. Oceanologia et Limnologia Sinica, 2012, 43(4): 723−728. doi: 10.11693/hyhz201204006006
    [16] 孙莎, 钟婵, 章骞, 等. 4种海产贝类中主要呈味物质含量与季节变化的关系[J]. 集美大学学报(自然科学版), 2016, 21(6): 420−427.

    Sun Sha, Zhong Chan, Zhang Qian, et al. Seasonal variation of taste-active component contents in four species of marine shellfish[J]. Journal of Jimei University (Natural Science), 2016, 21(6): 420−427.
    [17] 陈燕园, 刘圣, 何京, 等. 浙江缢蛏群体糖原含量变化与gys基因多态性的关联分析[J]. 水产学报, 2021, 45(3): 415−423.

    Chen Yanyuan, Liu Sheng, He Jing, et al. Glycogen content fluctuation and association analysis with polymorphism of gys gene of Sinonovacula constricta in the Zhejiang population[J]. Journal of Fisheries of China, 2021, 45(3): 415−423.
    [18] Bayne B L. Aspects of reproduction in bivalve molluscs[M]//Wiley M. Estuarine Processes. New York: Academic Press, 1976: 432−448.
    [19] Barber B J, Blake N J. Energy storage and utilization in relation to gametogenesis in Argopecten irradians concentricus (say)[J]. Journal of Experimental Marine Biology and Ecology, 1981, 52(2/3): 121−134.
    [20] Yan Hongwei, Li Qi, Liu Wenguang, et al. Seasonal changes in reproductive activity and biochemical composition of the razor clam Sinonovacula constricta (Lamarck 1818)[J]. Marine Biology Research, 2010, 6(1): 78−88. doi: 10.1080/17451000903039756
    [21] Sandström M E, Abbate F, Andersson D C, et al. Insulin-independent glycogen supercompensation in isolated mouse skeletal muscle: role of phosphorylase inactivation[J]. Pflügers Archiv, 2004, 448(5): 533−538.
    [22] Ferguson D M, Gerrard D E. Regulation of post-mortem glycolysis in ruminant muscle[J]. Animal Production Science, 2014, 54(4): 464−481. doi: 10.1071/AN13088
    [23] Zhao Na, Hou Ming, Wang Ting, et al. Cloning and expression patterns of the brine shrimp (Artemia sinica) glycogen phosphorylase (GPase) gene during development and in response to temperature stress[J]. Molecular Biology Reports, 2014, 41(1): 9−18. doi: 10.1007/s11033-013-2764-3
    [24] Vali S, Carlsen R, Pessah I, et al. Role of the sarcoplasmic reticulum in regulating the activity-dependent expression of the glycogen phosphorylase gene in contractile skeletal muscle cells[J]. Journal of Cellular Physiology, 2000, 185(2): 184−199. doi: 10.1002/1097-4652(200011)185:2<184::AID-JCP3>3.0.CO;2-T
    [25] Oruç Ö E, Dursun Ö. An application of information theoretical measures for DNA structure[J]. Turkiye Klinikleri Journal of Biostatistics, 2011, 3(1): 1−7.
    [26] Fiume E, Christou P, Giani S, et al. Introns are key regulatory elements of rice tubulin expression[J]. Planta, 2004, 218(5): 693−703. doi: 10.1007/s00425-003-1150-0
    [27] 唐立群, 肖层林, 王伟平. SNP分子标记的研究及其应用进展[J]. 中国农学通报, 2012, 28(12): 154−158. doi: 10.11924/j.issn.1000-6850.2012-0074

    Tang Liqun, Xiao Cenglin, Wang Weiping. Research and application progress of SNP markers[J]. Chinese Agricultural Science Bulletin, 2012, 28(12): 154−158. doi: 10.11924/j.issn.1000-6850.2012-0074
    [28] 赵家熙, 崔宝月, 董迎辉, 等. 缢蛏生长因子受体结合蛋白2基因克隆、时空表达及SNP筛查[J]. 海洋学报, 2018, 40(2): 87−94.

    Zhao Jiaxi, Cui Baoyue, Dong Yinghui, et al. Cloning, spatiotemporal expression and SNPs identification of GRB2 gene in Sinonovacula constricta[J]. Haiyang Xuebao, 2018, 40(2): 87−94.
    [29] 刘思玮, 李琪, 于红, 等. 长牡蛎糖原磷酸化酶基因SNPs与生长性状和糖原含量的相关性分析[J]. 中国水产科学, 2013, 20(3): 481−489. doi: 10.3724/SP.J.1118.2013.00481

    Liu Siwei, Li Qi, Yu Hong, et al. Single nucleotide polymorphisms in glycogen phosphorylase gene and their association with growth performance and glycogen content in Pacific oyster Crassostrea gigas[J]. Journal of Fishery Sciences of China, 2013, 20(3): 481−489. doi: 10.3724/SP.J.1118.2013.00481
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  379
  • HTML全文浏览量:  90
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2021-11-21
  • 网络出版日期:  2021-12-25
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回