留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珠江三角洲全新世沉积物磁性特征及早期成岩作用分析

吉俊熹 时硕 陈莹璐 王孟瑶 王张华

吉俊熹,时硕,陈莹璐,等. 珠江三角洲全新世沉积物磁性特征及早期成岩作用分析[J]. 海洋学报,2022,44(6):89–105 doi: 10.12284/hyxb2022061
引用本文: 吉俊熹,时硕,陈莹璐,等. 珠江三角洲全新世沉积物磁性特征及早期成岩作用分析[J]. 海洋学报,2022,44(6):89–105 doi: 10.12284/hyxb2022061
Ji Junxi,Shi Shuo,Chen Yinglu, et al. Magnetic characteristics and early diagenesis of Holocene sediments in the Zhujiang River Delta[J]. Haiyang Xuebao,2022, 44(6):89–105 doi: 10.12284/hyxb2022061
Citation: Ji Junxi,Shi Shuo,Chen Yinglu, et al. Magnetic characteristics and early diagenesis of Holocene sediments in the Zhujiang River Delta[J]. Haiyang Xuebao,2022, 44(6):89–105 doi: 10.12284/hyxb2022061

珠江三角洲全新世沉积物磁性特征及早期成岩作用分析

doi: 10.12284/hyxb2022061
基金项目: 南方海洋科学与工程广东省实验室(珠海)创新团队项目(311021004)。
详细信息
    作者简介:

    吉俊熹(1997-), 男,海南省乐东县人,主要研究方向为河口海岸带沉积环境演变。E-mail: 1604991523@qq.com

    通讯作者:

    王张华(1973-),教授,女,浙江省诸暨市人,主要研究方向为河口海岸沉积环境演变。E-mail: zhwang@geo.ecnu.edu.cn

  • 中图分类号: P736.21

Magnetic characteristics and early diagenesis of Holocene sediments in the Zhujiang River Delta

  • 摘要: 磁性矿物的早期成岩作用是沉积物埋藏后的重要过程,辨别早期成岩作用,才能更好地解释地层的矿物磁性变化。本研究对珠江三角洲顺德平原全新世钻孔MZ孔进行沉积相和室温磁性分析,并辅以热磁分析鉴定磁性矿物,以探讨钻孔不同深度和沉积相的早期成岩作用阶段。结果表明,MZ孔全新世地层自下而上包括感潮河道、河口湾和三角洲相。室温磁性特征与沉积相缺乏明显关联,表现出强烈的早期成岩作用。此外,全新世晚期岩芯磁性特征还受人类活动影响。该孔早期成岩作用以磁性矿物溶解和形成自生黄铁矿为主。在三角洲前缘相的上部和河口湾相底部保存了硫复铁矿。根据矿物组合推测以4.51~4.56 m和30.4~30.5 m两个深度为代表的硫复铁矿形成机制不同,即三角洲前缘相中硫复铁矿可能形成于早期成岩作用的硫酸盐还原阶段,而河口湾相的硫复铁矿形成于甲烷厌氧氧化阶段,后者的含量随着深度增加逐渐增多。上述现象说明,沉积环境可以通过影响有机质和硫酸根离子的供应量,决定磁性矿物所达到的早期成岩作用阶段。
  • 图  1  稳态早期成岩作用分带及磁性矿物浓度变化的概念模型图(修改自文献[26-27])

    红色为磁铁矿,灰色为硫复铁矿。SD、PSD、MD、SP分别为单畴态、假单畴态、多畴态以及超顺磁态颗粒;SMTZ为硫酸盐-甲烷转换带

    Fig.  1  Steady mtate redox zones of early diagenesis and associated changes in the concentrations of magnetic minerals (refer to references [26-27])

    Magnetite is red, greigite is gray. SD, PSD, MD and SP are single-domain, pseudosingle-domain, multi-domain and superparamagnetic particles. SMTZ is sulfate-methane transition zone

    图  2  珠江三角洲平原及MZ孔位置

    Fig.  2  Zhujiang River Delta plain and location of Core MZ

    图  3  MZ孔主要沉积相的典型岩性照片

    a.河床;b–g. 感潮河道;h–m. 河口湾;n. 前三角洲;o. 三角洲前缘斜坡;p–r. 三角洲前缘。深度单位:m

    Fig.  3  Typical lithologic photos of main sedimentary facies in Core MZ

    a. River bed; b–g. tidal river; h–m. embayment; n. prodelta; o. delta front slope; p–r. delta front. Depth unit: m

    图  4  MZ孔岩性、沉积构造、粒度组成、14C测年、沉积速率及沉积相判断

    Fig.  4  Lithology, sedimentary structure, grain-size composition, deposition rate, AMS14C ages and interpretation of sedimentary facies in Core MZ

    图  5  MZ孔粒径、室温磁性参数垂向分布及单元划分

    灰色条带表示进行热磁分析的样品

    Fig.  5  Vertical distributions of mean grain-size and magnetic parameters at room temperature and unit division of Core MZ

    The gray strip represents the sample for thermomagnetic analysis

    图  6  MZ孔典型样品热磁曲线图

    按深度排列,Ⅰ−Ⅵ表示矿物组合类型

    Fig.  6  Representative thermomagnetic curves in Core MZ

    Arranged by depth, Ⅰ−Ⅵ representing the mineral assemblages

    图  7  各磁性单元的含泥量与质量磁化率散点图

    A单元:三角洲前缘;B三角洲前缘−斜坡;C斜坡−前三角洲;D单元:前三角洲;E、F单元:河口湾;G单元:感潮河道−河床

    Fig.  7  Biplots of sediment content vs magnetic susceptibility of each magnetic unit

    A: Delta front; B: delta front-slope; C: slope-prodelta; D: prodelta; E and F: embayment; G: tidal river-river bed

    图  8  MZ孔早期成岩作用阶段垂向分布示意图

    Fig.  8  Schematic diagram of the vertical distribution of early diagenetic zones in Core MZ

    表  1  珠江三角洲顺德平原MZ孔测年结果及校正(校正年龄取概率大于0.8的区间)

    Tab.  1  AMS14C ages and calibrations for Core MZ in the Shunde Plain of Zhujiang River Delta (the calibrated ages are selected with a probability of more than 0.8)

    深度/m标高/m测年材料常规年龄/a BP校正年龄/cal. a BP实验室编号
    中值概率
    6.52−6.1植物380±30318~5034451.000Beta-548917
    7.78−7.36植物1 100±30955~1 0631 0000.961Beta-548918
    10.39−9.97木头2 880±302 921~3 0783 0100.899Beta-548919
    11.80−11.38贝壳2 590±301 993~2 3882 2051.000Beta-548920
    17.43−17.01贝壳2 690±302 117~2 5652 3351.000Beta-548921
    18.44−18.02贝壳3 010±302 516~2 9182 7301.000Beta-548923
    21.74−21.32贝壳5 420±305 524~5 8915 6951.000Beta-548924
    21.88−21.46植物7 820±308 534~8 6498 5950.968Beta-548925
    22.14−21.72植物4 950±305 598~5 7325 6601.000Beta-548926
    30.06−29.64植物8 780±309 658~9 9089 7850.963Beta-548927
    31.30−30.88木头8 850±309 766~10 1549 9701.000Beta-548928
    42.73−42.31贝壳10 980±3012 813~12 99812 8800.915Beta-548929
    44.20−43.78贝壳11 180±3013 081~13 16213 1101.000Beta-548930
    下载: 导出CSV

    表  2  MZ孔磁性单元的磁参数特征值

    Tab.  2  Characteristic values of magnetic parameters in each unit of Core MZ

    磁性参数磁性单元及沉积相类型
    A单元
    (三角洲前缘)
    B单元
    (三角洲
    前缘−斜坡)
    C单元
    (斜坡−前三
    角洲)
    D单元
    (前三角洲)
    E单元
    (河口湾)
    F单元
    (河口湾)
    G单元
    (感潮河道−河床)
    χ/
    (10−8 m3·kg−1
    范围119.7~395.411.5~71.27.1~26.417.5~28.013.0~30.416.1~93.23.9~73.5
    平均值202.152.213.821.920.834.122.2
    标准差73.315.47.62.33.918.011.0
    SIRM/
    (10−6 Am2·kg−1
    范围10 461.3~30 448.1905.2~28 471.9341.0~3 542.41 636.0~4 355.81 711.9~4 217.11 955.8~18 601.51 007.5~27 547.1
    平均值17 272.36 909.81 466.52 607.62 792.07 210.82 959.0
    标准差5 966.55 625.41 295.6690.5623.95 291.83 697.6
    χfd /%范围5~9.710~7.00~1.90~1.60~9.720~3.70~2.7
    平均值6.84.20.30.20.90.70.5
    标准差1.22.10.70.42.00.90.7
    χarm/
    (10−8 m3·kg−1
    范围467.3~1 842.411.9~1 756.81.5~20.933.0~404.0200.6~521.260.3~338.222.8~266.8
    平均值940.6356.95.8145.6346.1198.683.5
    标准差320.6403.56.8101.283.586.749.7
    χarm/χ范围3.3~7.20.2~67.10.1~3.01.6~18.511.2~21.91.1~13.41.7~14.0
    平均值4.88.40.76.616.76.84.0
    标准差1.015.01.04.52.73.22.3
    χarm/SIRM)/
    (10−5 mA−1
    范围33.1~88.42.1~594.30.9~61.416.1~134.885.9~162.610.8~70.59.7~91.9
    平均值56.574.912.552.5124.635.332.2
    标准差14.7133.421.927.515.917.312.6
    SIRM/χ范围7.7~10.07.8~50.74.8~13.69.1~19.28.4~14.75.0~60.96.6~37.5
    平均值8.613.08.711.913.424.412.7
    标准差0.89.53.62.71.116.25.8
    HIRM/
    (10−6 Am2·kg−1
    范围66.1~1 241.4121.0~698.425.9~256.2129.5~231.573.6~236.06.5~721.29.3~372.1
    平均值595.6318.5129.6196.2165.3195.8131.7
    标准差319.5126.284.921.040.4155.569.8
    S−20/%范围53.3~75.750.8~80.161.1~73.856.5~81.581.1~568.759.8~98.853.6~97.8
    平均值58.757.169.362.363.073.866.4
    标准差7.57.84.26.44.211.08.7
    S−40/%范围75.1~86.950.5~76.753.0~68.452.6~73.959.8~82.851.9~98.853.5~98.5
    平均值79.270.158.163.864.663.662.0
    标准差3.45.16.04.14.610.47.5
    S−100/%范围90.0~95.364.3~91.369.0~88.480.5~88.686.2~95.881.1~99.675.3~100.0
    平均值92.287.777.984.487.888.386.3
    标准差1.46.07.62.11.53.53.5
    S−300/%范围95.4~99.681.7~97.683.3~94.189.2~95.492.5~97.791.2~99.988.7~99.7
    平均值96.694.289.292.194.096.194.5
    标准差1.23.33.81.60.92.52.1
      注:磁参数特征值包括最大值、最小值、平均值和标准差。
    下载: 导出CSV
  • [1] Thompson R, Oldfield F. Environmental Magnetism[M]. London: Allen & Unwin, 1986.
    [2] Oldfield F. Environmental magnetism—a personal perspective[J]. Quaternary Science Reviews, 1991, 10(1): 73−85. doi: 10.1016/0277-3791(91)90031-O
    [3] Bloemendal J, King J W, Hall F R, et al. Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: relationship to sediment source, diagenetic processes, and sediment lithology[J]. Journal of Geophysical Research: Solid Earth, 1992, 97(B4): 4361−4375. doi: 10.1029/91JB03068
    [4] Verosub K L, Roberts A P. Environmental magnetism: past, present, and future[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B2): 2175−2192. doi: 10.1029/94JB02713
    [5] Liu Qingsong, Roberts A P, Larrasoaña J C, et al. Environmental magnetism: principles and applications[J]. Reviews of Geophysics, 2012, 50(4): RG4002.
    [6] 张卫国, 贾铁飞, 陆敏, 等. 长江口水下三角洲Y7柱样磁性特征及其影响因素[J]. 第四纪研究, 2007, 27(6): 1063−1071. doi: 10.3321/j.issn:1001-7410.2007.06.022

    Zhang Weiguo, Jia Tiefei, Lu Min, et al. Magnetic properties of core Y7 from subaqueous delta of the Changjiang estuary and their influencing factors[J]. Quaternary Sciences, 2007, 27(6): 1063−1071. doi: 10.3321/j.issn:1001-7410.2007.06.022
    [7] 马鸿磊, 张卫国, 胡忠行, 等. 长江口外CX21柱样的磁性特征及其影响因素[J]. 华东师范大学学报(自然科学版), 2012(3): 120−129,153.

    Ma Honglei, Zhang Weiguo, Hu Zhongxing, et al. Magnetic properties of the core CX21 off the Yangtze Estuary and its influencing factors[J]. Journal of East China Normal University (Natural Science), 2012(3): 120−129,153.
    [8] 王永红, 张卫国, 刘修锦, 等. 黄河三角洲不同气候条件下沉积物中胶黄铁矿的形成[J]. 中国科学:地球科学, 2014, 44(10): 2193−2201.

    Wang Yonghong, Zhang Weiguo, Liu Xiujin, et al. Formation of greigite under different climate conditions in the Yellow River delta[J]. Science China: Earth Sciences, 2014, 44(10): 2193−2201.
    [9] 刘修锦, 王永红, 李广雪, 等. 基于磁学和粒度参数的黄河三角洲刁口叶瓣地区全新世以来的地层演化[J]. 沉积学报, 2014, 32(3): 518−526.

    Liu Xiujin, Wang Yonghong, Li Guangxue, et al. Stratigraphy evolution of the Diaokou Lobe area in the Huanghe Delta since Holocene: implication from grain size and magnetic properties[J]. Acta Sedimentologica Sinica, 2014, 32(3): 518−526.
    [10] Chen Ting, Wang Zhanghua, Wu Xuxu, et al. Magnetic properties of tidal flat sediments on the Yangtze coast, China: early diagenetic alteration and implications[J]. The Holocene, 2015, 25(5): 832−843. doi: 10.1177/0959683615571425
    [11] 白雪莘, 张卫国, 董艳, 等. 长江三角洲全新世地层中潮滩沉积磁性特征及其古环境意义[J]. 沉积学报, 2016, 34(6): 1165−1175.

    Bai Xuexin, Zhang Weiguo, Dong Yan, et al. Magnetic properties of Holocene tidal flats in the Yangtze Delta and their paleoenvironmental implications[J]. Acta Sedimentologica Sinica, 2016, 34(6): 1165−1175.
    [12] Pan Dadong, Chen Ting, Zhan Qing, et al. Mineral magnetic properties of Holocene sediments in the subaqueous Yangtze delta and the implications for human activity and early diagenesis[J]. Quaternary International, 2017, 459: 133−143. doi: 10.1016/j.quaint.2017.05.010
    [13] Yang Xiaoqiang, Grapes R, Zhou Houyun, et al. Magnetic properties of sediments from the Pearl River Delta, South China: paleoenvironmental implications[J]. Science in China Series D: Earth Sciences, 2008, 51(1): 56−66. doi: 10.1007/s11430-007-0151-4
    [14] 欧阳婷萍, 万洪富, 张金兰, 等. 珠江三角洲农业土壤磁化率空间分布特征及其影响因素分析[J]. 第四纪研究, 2012, 32(6): 1199−1206. doi: 10.3969/j.issn.1001-7410.2012.06.13

    Ouyang Tingping, Wan Hongfu, Zhang Jinlan, et al. Spatial distribution characteristics of magnetic susceptibility of agricultural soils and analysis of its influencing factors for the Pearl River Delta, China[J]. Quaternary Sciences, 2012, 32(6): 1199−1206. doi: 10.3969/j.issn.1001-7410.2012.06.13
    [15] Chu Nanyang, Yang Qingshu, Liu Feng, et al. Distribution of magnetic properties of surface sediment and its implications on sediment provenance and transport in Pearl River Estuary[J]. Marine Geology, 2020, 424: 106162. doi: 10.1016/j.margeo.2020.106162
    [16] 杨小强, 李华梅, 余素华. 从SX97孔分析深圳沿海近3万年来海平面及气候变迁[J]. 地球化学, 2003, 32(2): 146−154. doi: 10.3321/j.issn:0379-1726.2003.02.007

    Yang Xiaoqiang, Li Huamei, Yu Suhua. Sea-level fluctuations and paleoclimatic evolution histories from Core SX97 in Shenzhen region of South China during about 30 ka BP[J]. Geochimica, 2003, 32(2): 146−154. doi: 10.3321/j.issn:0379-1726.2003.02.007
    [17] 曹玲珑, 王建华, 王晓静, 等. 珠江口全新世沉积物粒度与磁化率的变化特征及其所反映的气候环境变化[J]. 海洋湖沼通报, 2012(1): 167−175. doi: 10.3969/j.issn.1003-6482.2012.01.022

    Cao Linglong, Wang Jianhua, Wang Xiaojing, et al. Holoceneediments of the Pearl River Estuary changes in grain size and magnetic susceptibility and as reflected in climate changes[J]. Transactions of Oceanology and Limnology, 2012(1): 167−175. doi: 10.3969/j.issn.1003-6482.2012.01.022
    [18] 彭杰, 杨小强, 黄文娅, 等. 珠江三角洲全新世海平面升降及其对全球变化的响应[J]. 中山大学学报(自然科学版), 2014, 53(6): 63−72.

    Peng Jie, Yang Xiaoqiang, Huang Wenya, et al. Sea-level fluctuations and response to global changes during the Holocene in the Pearl River Delta, South China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53(6): 63−72.
    [19] Karlin R, Levi S. Diagenesis of magnetic minerals in recent haemipelagic sediments[J]. Nature, 1983, 303(5915): 327−330. doi: 10.1038/303327a0
    [20] Snowball I, Thompson R. A stable chemical remanence in Holocene sediments[J]. Journal of Geophysical Research: Solid Earth, 1990, 95(B4): 4470−4479.
    [21] Roberts A P, Turner G M. Diagenetic formation of ferrimagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand[J]. Earth and Planetary Science Letters, 1993, 115(1/4): 257−273.
    [22] Roberts A P, Reynolds R L, Verosub K L, et al. Environmental magnetic implications of Greigite (Fe3S4) Formation in a 3 m. y. lake sediment record from Butte Valley, northern California[J]. Geophysical Research Letters, 1996, 23(20): 2859−2862. doi: 10.1029/96GL02831
    [23] Robinson S G, Sahota J T S, Oldfield F. Early diagenesis in North Atlantic abyssal plain sediments characterized by rock-magnetic and geochemical indices[J]. Marine Geology, 2000, 163(1/4): 77−107.
    [24] Liu Jian, Zhu Rixiang, Roberts A P, et al. High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B3): B03103.
    [25] Demory F, Oberhänsli H, Nowaczyk N R, et al. Detrital input and early diagenesis in sediments from Lake Baikal revealed by rock magnetism[J]. Global and Planetary Change, 2005, 46(1/4): 145−166.
    [26] Rowan C J, Roberts A P, Broadbent T. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: a new view[J]. Earth and Planetary Science Letters, 2009, 277(1/2): 223−235.
    [27] Roberts A P. Magnetic mineral diagenesis[J]. Earth-Science Reviews, 2015, 151: 1−47. doi: 10.1016/j.earscirev.2015.09.010
    [28] Froelich P N, Klinkhammer G P, Bender M L, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis[J]. Geochimica et Cosmochimica Acta, 1979, 43(7): 1075−1090. doi: 10.1016/0016-7037(79)90095-4
    [29] Beal E J, House C H, Orphan V J. Manganese- and iron-dependent marine methane oxidation[J]. Science, 2009, 325(5937): 184−187. doi: 10.1126/science.1169984
    [30] 刘喜停, 李安春, 马志鑫, 等. 沉积过程对自生黄铁矿硫同位素的约束[J]. 沉积学报, 2020, 38(1): 124−137.

    Liu Xiting, Li Anchun, Ma Zhixin, et al. Constraint of sedimentary processes on the sulfur isotope of authigenic pyrite[J]. Acta Sedimentologica Sinica, 2020, 38(1): 124−137.
    [31] Liu Xiting, Li Anchun, Fike D A, et al. Environmental evolution of the East China Sea inner shelf and its constraints on pyrite sulfur contents and isotopes since the last deglaciation[J]. Marine Geology, 2020, 429: 106307. doi: 10.1016/j.margeo.2020.106307
    [32] Liu Jianxing, Shi Xuefa, Liu Qingsong, et al. Authigenic iron sulfides indicate sea-level change on the continental shelf: an illustration from the East China Sea[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(3): e2020JB021222.
    [33] Liu Xiting, Zhang Mingyu, Li Anchun, et al. Depositional control on carbon and sulfur preservation onshore and offshore the Oujiang Estuary: implications for the C/S ratio as a salinity indicator[J]. Continental Shelf Research, 2021, 227: 104510. doi: 10.1016/j.csr.2021.104510
    [34] Ran Yong, Zhang Yulong. Sources, early diagenesis, and structure of organic matter in the Pearl River Delta[M]// He Zhongqi, Wu Fengchang. Labile Organic Matter-Chemical Compositions, Function, and Significance in Soil and the Environment. Madison: Soil Science Society of America, 2015: 337−367.
    [35] 王建华, 郑卓, 吴超羽. 潮汕平原晚第四纪沉积相与古环境演变[J]. 中山大学学报(自然科学版), 1997, 36(1): 95−100.

    Wang Jianhua, Zheng Zhuo, Wu Chaoyu. Sedimentary facies and paleoenvironmental evolution of the late Quaternary in the Chao Shan Plain, East Guangdong[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1997, 36(1): 95−100.
    [36] Zhang Chaosheng, Wang Lijun. Multi-element geochemistry of sediments from the Pearl River system, China[J]. Applied Geochemistry, 2001, 16(9/10): 1251−1259.
    [37] 吴超羽, 任杰, 包芸, 等. 珠江河口“门”的地貌动力学初探[J]. 地理学报, 2006, 61(5): 537−548. doi: 10.3321/j.issn:0375-5444.2006.05.010

    Wu Chaoyu, Ren Jie, Bao Yun, et al. A preliminary study on the morphodynamic evolution of the ‘Gate’of the Pearl River Delta, China[J]. Acta Geographica Sinica, 2006, 61(5): 537−548. doi: 10.3321/j.issn:0375-5444.2006.05.010
    [38] 吴超羽, 何志刚, 任杰, 等. 珠江三角洲中部子平原形成演变机理研究——以大鳌平原为例[J]. 第四纪研究, 2007, 27(5): 814−827. doi: 10.3321/j.issn:1001-7410.2007.05.023

    Wu Chaoyu, He Zhigang, Ren Jie, et al. A physical study on the evolution of the sub-deltaic plains in the mid Zhujiang River delta: a case study of Da’ao sub-delta[J]. Quaternary Sciences, 2007, 27(5): 814−827. doi: 10.3321/j.issn:1001-7410.2007.05.023
    [39] Zong Y, Yu F, Huang G, et al. Sedimentary evidence of Late Holocene human activity in the Pearl River delta, China[J]. Earth Surface Processes and Landforms, 2010, 35(9): 1095−1102. doi: 10.1002/esp.1970
    [40] Zong Yongqiang, Huang Kangyou, Yu Fengling, et al. The role of sea-level rise, monsoonal discharge and the palaeo-landscape in the early Holocene evolution of the Pearl River delta, southern China[J]. Quaternary Science Reviews, 2012, 54: 77−88. doi: 10.1016/j.quascirev.2012.01.002
    [41] Fu Shuqing, Xiong Haixian, Zong Yongqiang, et al. Reasons for the low sedimentation and slow progradation in the Pearl River delta, southern China, during the middle Holocene[J]. Marine Geology, 2020, 423: 106133. doi: 10.1016/j.margeo.2020.106133
    [42] Yoneda M, Uno H, Shibata Y, et al. Radiocarbon marine reservoir ages in the western Pacific estimated by pre-bomb molluscan shells[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2007, 259(1): 432−437. doi: 10.1016/j.nimb.2007.01.184
    [43] Southon J, Kashgarian M, Fontugne M, et al. Marine reservoir corrections for the Indian ocean and Southeast Asia[J]. Radiocarbon, 2002, 44(1): 167−180. doi: 10.1017/S0033822200064778
    [44] Bloemendal J, Lamb B, King L. Paleoenvironmental implications of rock-magnetic properties of Late Quaternary sediment cores from the eastern equatorial Atlantic[J]. Paleoceanography and Paleoclimatology, 1988, 3(1): 61−87.
    [45] 张卫国, 俞立中, 许羽. 环境磁学研究的简介[J]. 地球物理学进展, 1995, 10(3): 95−105.

    Zhang Weiguo, Yu Lizhon, Xu Yu. Brief reviews on environmental maguetism[J]. Progress in Geophysics, 1995, 10(3): 95−105.
    [46] Maher B A. Magnetic properties of some synthetic sub-micron magnetites[J]. Geophysical Journal International, 1988, 94(1): 83−96. doi: 10.1111/j.1365-246X.1988.tb03429.x
    [47] Evans M E, Heller F, Bloemendal J, et al. Natural magnetic archives of past global change[J]. Surveys in Geophysics, 1997, 18(2): 183−196.
    [48] 谢红霞. 长江口潮滩芦苇与互花米草中重金属累积的比较研究[D]. 上海: 华东师范大学, 2006.

    Xie Hongxia. A comparative study on heavy metal accumulation in Phragmites australis and Spartina alterniflora in tidal flat of Yangtze Estuary[D]. Shanghai: East China Normal University, 2006.
    [49] Stober J C, Thompson R. An investigation into the source of magnetic minerals in some Finnish lake sediments[J]. Earth and Planetary Science Letters, 1979, 45(2): 464−474. doi: 10.1016/0012-821X(79)90145-6
    [50] Snowball I F. Magnetic hysteresis properties of greigite (Fe3S4) and a new occurrence in Holocene sediments from Swedish Lappland[J]. Physics of the Earth and Planetary Interiors, 1991, 68(1/2): 32−40.
    [51] Roberts A P. Magnetic properties of sedimentary greigite (Fe3S4)[J]. Earth and Planetary Science Letters, 1995, 134(3/4): 227−236.
    [52] Passier H F, De Lange G J, Dekkers M J. Magnetic properties and geochemistry of the active oxidation front and the youngest sapropel in the eastern Mediterranean Sea[J]. Geophysical Journal International, 2001, 145(3): 604−614. doi: 10.1046/j.0956-540x.2001.01394.x
    [53] Roberts A P, Chang Liao, Rowan C J, et al. Magnetic properties of sedimentary greigite (Fe3S4): an update[J]. Reviews of Geophysics, 2011, 49(1): RG1002.
    [54] Dunlop D, Özdemir Ö, Fuller M D. Rock magnetism: fundamentals and frontiers[J]. Physics Today, 1998, 51(9): 64−66. doi: 10.1063/1.882466
    [55] Basavaiah N, Babu J L V M, Gawali P B, et al. Late Quaternary environmental and sea level changes from Kolleru Lake, SE India: inferences from mineral magnetic, geochemical and textural analyses[J]. Quaternary International, 2015, 371: 197−208. doi: 10.1016/j.quaint.2014.12.018
    [56] Hoffmann V. Greigite (Fe3S4): magnetic properties and first domain observations[J]. Physics of the Earth and Planetary Interiors, 1992, 70(3/4): 288−301.
    [57] Torii M, Fukuma K, Horng C S, et al. Magnetic discrimination of pyrrhotite- and greigite-bearing sediment samples[J]. Geophysical Research Letters, 1996, 23(14): 1813−1816. doi: 10.1029/96GL01626
    [58] 李海燕, 张世红. 黄铁矿加热过程中的矿相变化研究——基于磁化率随温度变化特征分析[J]. 地球物理学报, 2005, 48(6): 1384−1391. doi: 10.3321/j.issn:0001-5733.2005.06.022

    Li Haiyan, Zhang Shihong. Detection of mineralogical changes in pyrite using measurements of temperature-dependence susceptibilities[J]. Chinese Journal of Geophysics, 2005, 48(6): 1384−1391. doi: 10.3321/j.issn:0001-5733.2005.06.022
    [59] 王磊, 潘永信, 李金华, 等. 黄铁矿热转化矿物相变过程的岩石磁学研究[J]. 中国科学 D辑: 地球科学, 2008, 38(9): 1068−1077.

    Wang Lei, Pan Yongxin, Li Jinhua, et al. Petromagnetic study of pyrite thermal transformation mineral transformation process[J]. Science China: Earth Sciences, 2008, 38(9): 1068−1077.
    [60] Ferrow E A, Sjöberg B A. Oxidation of pyrite grains: a mössbauer spectroscopy and mineral magnetism study[J]. Hyperfine Interactions, 2005, 163(1/4): 95−108.
    [61] Liu Xiuming, Hesse P, Rolph T, et al. Properties of magnetic mineralogy of Alaskan loess: evidence for pedogenesis[J]. Quaternary International, 1999, 62(1): 93−102. doi: 10.1016/S1040-6182(99)00027-0
    [62] Zhou L P, Oldfield F, Wintle A G, et al. Partly Pedogenic origin of magnetic variations in Chinese loess[J]. Nature, 1990, 346(6286): 737−739. doi: 10.1038/346737a0
    [63] Jia Jia, Xia Dunsheng, Wang Bo, et al. Magnetic investigation of Late Quaternary loess deposition, Ili area, China[J]. Quaternary International, 2012, 250: 84−92. doi: 10.1016/j.quaint.2011.06.018
    [64] Chen Huixian, Wang Jianhua, Khan N S, et al. Early and late Holocene paleoenvironmental reconstruction of the Pearl River estuary, South China Sea using foraminiferal assemblages and stable carbon isotopes[J]. Estuarine, Coastal and Shelf Science, 2019, 222: 112−125. doi: 10.1016/j.ecss.2019.04.002
    [65] Liu Yan, He Zhongfa, Wang Zhanghua. Magnetic properties of Holocene core ZK9 in the subaqueous Yangtze delta and their mechanisms and implications[J]. Frontiers of Earth Science, 2013, 7(3): 331−340. doi: 10.1007/s11707-013-0375-x
    [66] 梁方仲. 中国历代户口、田地、田赋统计: 上册[M]. 北京: 中华书局, 2008.

    Liang Fangzhong. Statistics of Registered Residents, Farmlands, Land Tax in Chinese History[M]. Beijing: Zhong Hua Book Company, 2008.
    [67] Hu Dengke, Clift P D, Böning P, et al. Holocene evolution in weathering and erosion patterns in the Pearl River delta[J]. Geochemistry, Geophysics, Geosystems, 2013, 14(7): 2349−2368. doi: 10.1002/ggge.20166
    [68] Yu Fengling, Zong Yongqiang, Lloyd J M, et al. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China[J]. Estuarine, Coastal and Shelf Science, 2010, 87(4): 618−630. doi: 10.1016/j.ecss.2010.02.018
    [69] Zong Yongqiang, Zheng Zhuo, Huang Kangyou, et al. Changes in sea level, water salinity and wetland habitat linked to the late agricultural development in the Pearl River delta plain of China[J]. Quaternary Science Reviews, 2013, 70: 145−157. doi: 10.1016/j.quascirev.2013.03.020
    [70] Garming J F L, Bleil U, Riedinger N. Alteration of magnetic mineralogy at the sulfate–methane transition: analysis of sediments from the Argentine continental slope[J]. Physics of the Earth and Planetary Interiors, 2005, 151(3/4): 290−308.
    [71] Riedinger N, Pfeifer K, Kasten S, et al. Diagenetic alteration of magnetic signals by anaerobic oxidation of methane related to a change in sedimentation rate[J]. Geochimica et Cosmochimica Acta, 2005, 69(16): 4117−4126. doi: 10.1016/j.gca.2005.02.004
    [72] März C, Hoffman J, Bleil U, et al. Diagenetic changes of magnetic and geochemical signals by anaerobic methane oxidation in sediments of the Zambezi deep-sea fan (SW Indian Ocean)[J]. Marine Geology, 2008, 255(3/4): 118−130.
    [73] Poulton S W, Krom M D, Raiswell R. A revised scheme for the reactivity of iron (oxyhydr) oxide minerals towards dissolved sulfide[J]. Geochimica et Cosmochimica Acta, 2004, 68(18): 3703−3715. doi: 10.1016/j.gca.2004.03.012
    [74] Peng Xiaotong, Guo Zixiao, Chen Shun, et al. Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply[J]. Geochimica et Cosmochimica Acta, 2017, 205: 1−13. doi: 10.1016/j.gca.2017.02.010
    [75] Canfield D E, Berner R A. Dissolution and pyritization of magnetite in anoxie marine sediments[J]. Geochimica et Cosmochimica Acta, 1987, 51(3): 645−659. doi: 10.1016/0016-7037(87)90076-7
    [76] 罗祎, 苏新, 蒋少涌, 等. 东太平洋水合物海岭钻井沉积物铁硫化物的磁学特征及其意义[J]. 地学前缘, 2013, 20(5): 235−247.

    Luo Yi, Su Xin, Jiang Shaoyong, et al. The magnetic properties of iron sulfide minerals from Hydrate Ridge cores, East Pacific and their significance[J]. Earth Science Frontiers, 2013, 20(5): 235−247.
    [77] Kao S J, Horng C S, Roberts A P, et al. Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation[J]. Chemical Geology, 2004, 203(1/2): 153−168.
    [78] Aben F M, Dekkers M J, Bakker R R, et al. Untangling inconsistent magnetic polarity records through an integrated rock magnetic analysis: a case study on Neogene sections in East Timor[J]. Geochemistry, Geophysics, Geosystems, 2014, 15(6): 2531−2554. doi: 10.1002/2014GC005294
    [79] Tarduno J A. Temporal trends of magnetic dissolution in the pelagic realm: gauging paleoproductivity?[J]. Earth and Planetary Science Letters, 1994, 123(1/3): 39−48.
    [80] Yamazaki T, Abdeldayem A L, Ikehara K. Rock-magnetic changes with reduction diagenesis in Japan Sea sediments and preservation of geomagnetic secular variation in inclination during the last 30, 000 years[J]. Earth, Planets and Space, 2003, 55(6): 327−340. doi: 10.1186/BF03351766
    [81] Dillon M, Bleil U. Rock magnetic signatures in diagenetically altered sediments from the Niger deep-sea fan[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B3): B03105.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  470
  • HTML全文浏览量:  285
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-29
  • 修回日期:  2021-09-10
  • 网络出版日期:  2022-07-13
  • 刊出日期:  2022-07-13

目录

    /

    返回文章
    返回