留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西太平洋卡罗琳海域沉积速率:来自3种测年方法的限定

陈亮 殷征欣 刘紫荆 唐盟

陈亮,殷征欣,刘紫荆,等. 西太平洋卡罗琳海域沉积速率:来自3种测年方法的限定[J]. 海洋学报,2022,44(6):1–10 doi: 10.12284/hyxb2022051
引用本文: 陈亮,殷征欣,刘紫荆,等. 西太平洋卡罗琳海域沉积速率:来自3种测年方法的限定[J]. 海洋学报,2022,44(6):1–10 doi: 10.12284/hyxb2022051
Chen Liang,Yin Zhengxin,Liu Zijing, et al. Sedimentation rate obtained by multiple chronological analysis in Caroline area of the western Pacific Ocean[J]. Haiyang Xuebao,2022, 44(6):1–10 doi: 10.12284/hyxb2022051
Citation: Chen Liang,Yin Zhengxin,Liu Zijing, et al. Sedimentation rate obtained by multiple chronological analysis in Caroline area of the western Pacific Ocean[J]. Haiyang Xuebao,2022, 44(6):1–10 doi: 10.12284/hyxb2022051

西太平洋卡罗琳海域沉积速率:来自3种测年方法的限定

doi: 10.12284/hyxb2022051
基金项目: 全球变化与海气相互作用专项(GASI-02-PAC-CJ10);国家自然科学基金青年科学基金项目(41706055)。
详细信息
    作者简介:

    陈亮(1981-),男,湖北省当阳市人,博士,高级工程师,主要从事海洋沉积环境方面研究。E-mail:randal34@163.com

    通讯作者:

    殷征欣(1987-),男,河南省南阳市人,博士,高级工程师,从事海洋地质方面的研究。E-mail:yinzhengxin777@163.com

  • 中图分类号: P736

Sedimentation rate obtained by multiple chronological analysis in Caroline area of the western Pacific Ocean

  • 摘要: 为了更好地认识西太平洋暖池区北部卡罗琳海域沉积速率的变化,利用放射性碳测试(14C)、氧同位素及古地磁方法对采自西太平洋卡罗琳地区一根长217 cm的柱状样开展了综合年代学分析。14C数据获取了样品上部44.3 ka BP以来的年代数据,在此基础上利用氧同位素及古地磁相对强度(RPI)数据建立了该柱125 cm至表层的年代框架,对应为MIS4期(约8万年)以来的沉积。进一步分析发现本柱在126~127 cm处存在明显沉积间断,虽然该处已超出14C测年范围,但古地磁测试结果表明该柱位于布容正极性时期,同时古地磁强度与氧同位素的变化关系为沉积间断以下年代数据获取提供了可信的证据,表明该阶段对应为13万至18万年时期。本柱沉积速率在沉积间断前后均较为一致,为1~2 cm/ka。同时对比不同方法获取的沉积速率之间差异后,发现个别层位可能由于较高的有孔虫破壳率,导致14C值存在较大偏差。
  • 图  1  取样位置图

    Fig.  1  Sampling location

    图  2  氧同位素结果与LR04对比图

    Fig.  2  The distribution of oxygen isotope data compares with LR04

    图  3  部分样品古地磁退磁曲线图

    Fig.  3  The demagnetization curves for some samples

    图  4  古地磁倾角及相对强度(RPI)变化图

    RPINRM30 mT/ARM30 mT曲线中虚线部分(96~110 cm)由于样品原因,未获得ARM值,该层位年代值主要通过由k归一化的RPI获取

    Fig.  4  The variation of magnetic inclination and relative paleointensity (RPI)

    The ARM value from 96 cm to 110 cm have not been got for the sample lost, where is dotted in RPINRM30 mT/ARM30 mT curve, and the age in this depth mainly obtained from the RPINRM30 mT/k curve

    图  5  沉积间断以下年代获取对比图

    Fig.  5  The comparison for the obtained chronology below the sedimentary hiatus

    图  6  3种方法年代(a)及沉积速率(b)对比图

    Fig.  6  The distribution of age(a)and sedimentation rate(b)for three dating methods

    表  1  AMS14C测试及校对结果

    Tab.  1  The testing and calibration result of AMS14C

    深度/cm惯用年龄/a BP惯用年龄误差/a BP校正年龄值/cal a BP
    37 090±307 532
    1311 890±3013 325
    2317 180±6020 248
    3319 070±7022 552
    4327 980±12031 465
    5331 050±17034 973
    6335 460±25040 193
    7341 200±47043 771
    下载: 导出CSV

    表  2  本柱年代框架数据

    Tab.  2  Age frame data for this core

    深度/cm年代/ka沉积速率/cm·ka-1依据方法备注
    37.531.7314C
    1313.331.4414C
    2320.251.7414C
    3326.001.83氧同位素
    4331.472.8514C
    5334.971.9214C
    6340.192.7914C
    7343.771.2314C
    8351.911.96氧同位素
    9357.001.43氧同位素
    10364.001.43氧同位素
    11371.001.36氧同位素
    12680.53/氧同位素沉积间断
    127131.001.67RPI
    132134.001.67RPI
    152146.001.65RPI
    180163.002.00RPI
    210178.002.00RPI
    217181.50RPI
    下载: 导出CSV
  • [1] 李保华, 赵泉鸿, 陈民本, 等. 南沙海区晚第四纪浮游有孔虫演化及其古海洋学意义[J]. 微体古生物学报, 2001, 18(1): 1−9. doi: 10.3969/j.issn.1000-0674.2001.01.001

    Li Baohua, Zhao Quanhong, Chen Minben, et al. Late quaternary evolution of planktonic foraminifera in the southern South China sea and their paleoceanographic significance[J]. Acta Micropalaeontologica Sinica, 2001, 18(1): 1−9. doi: 10.3969/j.issn.1000-0674.2001.01.001
    [2] 汪品先, 闵秋宝, 卞云华, 等. 十三万年来南海北部陆坡的浮游有孔虫及其古海洋学意义[J]. 地质学报, 1986, 60(3): 215−225.

    Wang Pinxian, Min Qiubao, Bian Yunhua, et al. Planktonic foraminifera in the continental slope of the northern South China sea during the last 130, 000 years and their paleo-oceanographic implications[J]. Acta Geologic Sinica, 1986, 60(3): 215−225.
    [3] 庄丽华, 常凤鸣, 李铁刚, 等. 南黄海EY02—2孔底栖有孔虫群落特征与全新世沉积速率[J]. 海洋地质与第四纪地质, 2002, 22(4): 7−14.

    Zhuang Lihua, Chang Fengming, Li Tiegang, et al. Foraminiferal faunas and Holocene sedimentation rates of core EY02-2 in the south Yellow sea[J]. Marine Geology & Quaternary Geology, 2002, 22(4): 7−14.
    [4] 丁旋, 方念乔. 赤道西太平洋MD98-2182岩芯末次冰期以来的季风和厄尔尼诺事件记录[J]. 中国科学:地球科学, 2012, 55(10): 1706−1715. doi: 10.1007/s11430-012-4478-0

    Ding Xuan, Fang Nianqiao. The monsoon and El Niño events during the last glaciation as recorded in core MD98-2182 from the western equatorial Pacific Ocean[J]. Science China Earth Sciences, 2012, 55(10): 1706−1715. doi: 10.1007/s11430-012-4478-0
    [5] Zhang Guoliang, Zhang Ji, Wang Shuai, et al. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau[J]. Chemical Geology, 2020, 540: 119566. doi: 10.1016/j.chemgeo.2020.119566
    [6] Johnson G C, Toole J M. Flow of deep and bottom waters in the Pacific at 10°N[J]. Deep Sea Research Part I:Oceanographic Research Papers, 1993, 40(2): 371−394. doi: 10.1016/0967-0637(93)90009-R
    [7] 孟庆勇, 李安春, 李铁刚, 等. 西菲律宾海沉积物200 ka以来的地球磁场相对强度记录及其年代学意义[J]. 中国科学 D辑:地球科学, 2009, 52(8): 1115−1126. doi: 10.1007/s11430-009-0119-7

    Meng Qingyong, Li Anchun, Li Tiegang, et al. Relative paleointensity of the geomagnetic field during the past 200 ka from the West Philippine Sea and its chronological significance[J]. Science in China Series D: Earth Sciences, 2009, 52(8): 1115−1126. doi: 10.1007/s11430-009-0119-7
    [8] 赵京涛. 热带西太平洋边缘晚第四纪以来的古环境研究[D]. 青岛: 中国科学院海洋研究所, 2007.

    Zhao Jingtao. Paleoenvironment evolution in the margin region of tropical western pacific during the late Quaternary[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2007.
    [9] Kawahata H, Suzuki A, Ahagon N. Biogenic sediments in the West Caroline Basin, the western equatorial Pacific during the last 330, 000 years[J]. Marine Geology, 1998, 149(1/4): 155−176.
    [10] Stuiver M, Reimer P J, Reimer R W. CALIB 8.2[EB/OL]. http://calib.org/calib/, 2021-08-21.
    [11] Heaton T J, Köhler P, Butzin M, et al. Marine20—the marine radiocarbon age calibration curve (0-55, 000 cal BP)[J]. Radiocarbon, 62(4): 779−820.
    [12] Sagnotti L. Demagnetization Analysis in Excel (DAIE). An open source workbook in Excel for viewing and analyzing demagnetization data from paleomagnetic discrete samples and u-channels[J]. Annals of Geophysics, 2013, 56(1): D0114.
    [13] Lisiecki L E, Raymo M E. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography and Paleoclimatology, 2005, 20(1): PA1003.
    [14] Guyodo Y, Valet J P. Global changes in intensity of the Earth's magnetic field during the past 800 kyr[J]. Nature, 1999, 399(6733): 249−252. doi: 10.1038/20420
    [15] Mix A C, Ruddiman W F. Oxygen-isotope analyses and Pleistocene ice volumes[J]. Quaternary Research, 1984, 21(1): 1−20. doi: 10.1016/0033-5894(84)90085-1
    [16] Shackleton N. Oxygen isotope analyses and Pleistocene temperatures re-assessed[J]. Nature, 1967, 215(5096): 15−17. doi: 10.1038/215015a0
    [17] Cande S C, Kent D V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B4): 6093−6095. doi: 10.1029/94JB03098
    [18] Roberts A P, Tauxe L, Heslop D. Magnetic paleointensity stratigraphy and high-resolution Quaternary geochronology: successes and future challenges[J]. Quaternary Science Reviews, 2013, 61: 1−16. doi: 10.1016/j.quascirev.2012.10.036
    [19] Tauxe L. Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice[J]. Reviews of geophysics, 1993, 31(3): 319−354. doi: 10.1029/93RG01771
    [20] Guyodo Y, Valet J P. Relative variations in geomagnetic intensity from sedimentary records: the past 200, 000 years[J]. Earth and Planetary Science Letters, 1996, 143(1-4): 23−36. doi: 10.1016/0012-821X(96)00121-5
    [21] Valet J P, Meynadier L, Guyodo Y. Geomagnetic dipole strength and reversal rate over the past two million years[J]. Nature, 2005, 435(7043): 802−805. doi: 10.1038/nature03674
    [22] Néel L. Some theoretical aspects of rock-magnetism[J]. Advances in Physics, 1955, 4(14): 191−243. doi: 10.1080/00018735500101204
    [23] Levi S, Banerjee S K. On the possibility of obtaining relative paleointensities from lake sediments[J]. Earth and Planetary Science Letters, 1976, 29(1): 219−226. doi: 10.1016/0012-821X(76)90042-X
    [24] 仇士华, 蔡莲珍. 14C测年技术新进展[J]. 第四纪研究, 1997, 17(3): 223−229.

    Qiu Shihua, Cai Lianzhen. Recent advancement in radiocarbon dating[J]. Quaternary Sciences, 1997, 17(3): 223−229.
    [25] 刘志杰, 余佳, 孙晓燕, 等. 海洋沉积物14C测年数据整合与校正问题探讨[J]. 第四纪研究, 2016, 36(2): 492−502. doi: 10.11928/j.issn.1001-7410.2016.02.24

    Liu Zhijie, Yu Jia, Sun Xiaoyan, et al. A discussion of marine sediments 14C data integration and correction[J]. Quaternary Sciences, 2016, 36(2): 492−502. doi: 10.11928/j.issn.1001-7410.2016.02.24
    [26] Mekik F. Radiocarbon dating of planktonic foraminifer shells: a cautionary tale[J]. Paleoceanography and Paleoclimatology, 2014, 29(1): 13−29.
    [27] Barker S, Broecker W, Clark E, et al. Radiocarbon age offsets of foraminifera resulting from differential dissolution and fragmentation within the sedimentary bioturbated zone[J]. Paleoceanography and Paleoclimatology, 2007, 22(2): PA2205.
    [28] Lai Zhongping, Mischke S, Madsen D. Paleoenvironmental implications of new OSL dates on the formation of the “Shell Bar” in the Qaidam Basin, northeastern Qinghai-Tibetan Plateau[J]. Journal of Paleolimnology, 2014, 51(2): 197−210. doi: 10.1007/s10933-013-9710-1
    [29] Reimer P J, Bard E, Bayliss A, et al. IntCal13 and Marine13 radiocarbon age calibration curves 0-50, 000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869−1887. doi: 10.2458/azu_js_rc.55.16947
    [30] Stuiver M, Reimer P J, Bard E, et al. INTCAL98 radiocarbon age calibration, 24, 000-0 cal BP[J]. Radiocarbon, 1998, 40(3): 1041−1083. doi: 10.1017/S0033822200019123
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  37
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-18
  • 修回日期:  2021-09-24

目录

    /

    返回文章
    返回