留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

南黄海辐射沙洲潮流不对称性对岸线变动的响应

冯曦 丁志伟 冯辉 张蔚 储鏖 张驰

冯曦,丁志伟,冯辉,等. 南黄海辐射沙洲潮流不对称性对岸线变动的响应[J]. 海洋学报,2022,44(x):1–9 doi: 10.12284/hyxb2022049
引用本文: 冯曦,丁志伟,冯辉,等. 南黄海辐射沙洲潮流不对称性对岸线变动的响应[J]. 海洋学报,2022,44(x):1–9 doi: 10.12284/hyxb2022049
Feng Xi,Ding Zhiwei,Feng Hui, et al. Responses of tidal-current-asymmetry to shoreline variation in radial sand ridges in the South Yellow Sea[J]. Haiyang Xuebao,2022, 44(x):1–9 doi: 10.12284/hyxb2022049
Citation: Feng Xi,Ding Zhiwei,Feng Hui, et al. Responses of tidal-current-asymmetry to shoreline variation in radial sand ridges in the South Yellow Sea[J]. Haiyang Xuebao,2022, 44(x):1–9 doi: 10.12284/hyxb2022049

南黄海辐射沙洲潮流不对称性对岸线变动的响应

doi: 10.12284/hyxb2022049
基金项目: 国家自然科学基金(519056611);国家自然科学基金长江水科学联合基金项目(U2040203)。
详细信息
    作者简介:

    冯曦(1987-),女,江苏省南京市人,博士研究生,主要从事海岸水动力和海岸带灾害研究。E-mail:xifeng@hhu.edu.cn

  • 中图分类号: P737.17

Responses of tidal-current-asymmetry to shoreline variation in radial sand ridges in the South Yellow Sea

  • 摘要: 近岸地区的潮流不对称影响着沉积物输运和地貌改变。南黄海辐射沙洲海域潮动力强且水动力环境复杂,分析研究该海域潮流不对称性对于海岸带资源的开发与保护具有长远意义。本文基于Delft3D模型模拟1984年、2014年不同岸线条件下辐射沙洲海域的潮汐潮流运动,结合调和分析与偏度理论,分析刻画了不同岸线条件下潮流不对称性的空间分布特征。研究表明:辐射沙洲海域地形主导的涨落潮流速不对称性(PCA)以涨潮占优为主导;涨落憩历时不对称性(SWA)则以涨憩历时短为主导。二者皆主要受半日分潮(M2、S2)和浅水分潮(M4、MS4)的非线形作用影响。1984年至2014年岸线变动后PCA正负性不变但强度进一步增大,最大变幅可达25%;而$ {\gamma }_{\mathrm{S}\mathrm{W}\mathrm{A}} $减小,最大减幅可达20%,SWA在辐射沙洲海域涨憩历时短趋势增加。
  • 图  1  Delft3D水动力模型的网格及1984年及2014年岸线图(a),黄海海域地形图(b)及辐射沙洲地形图(c)

    Fig.  1  Grid domain of Delft3D hydrodynamic model and shorelines in 1984 and 2014 (a), bathymetry of the Yellow Sea (b), and bathymetry of the radial sand ridges (c)

    图  2  与 PCA(a,b)和SWA(c,d)相关的流速过程线示意图

    Fig.  2  Schematic diagram of tidal current time series in context of PCA (a, b) and SWA (c, d)

    图  3  不同公式计算所得PCA(a)和SWA(b)散点图

    Fig.  3  Scatter diagrams of PCA (a) and SWA (b) calculated by different formulas

    图  4  1984年涨急、落急流场分布(a,b)和2014年相较1984年的涨急、落急流速变化(c,d)

    Fig.  4  Distribution of flow field at flood and ebb in 1984 (a, b), changes of flow field at flood and ebb in 2014 as compared to 1984 (c, d)

    图  5  2014年PCA分布(a),2014年较1984年PCA变化分布(b),2014年PCA最大贡献项空(c)及1984年PCA最大贡献项空间分布(d)

    Fig.  5  Distribution of PCA in 2014 (a), distribution of PCA-changes in 2014 compared to 1984 (b), spatial distribution of the largest contributors to PCA in 2014 (c), and spatial distribution of the largest contributors to PCA in 1984 (d)

    图  6  2014年SWA分布(a),2014年较1984年SWA变化分布(b),2014年SWA最大贡献项空间分布(c)及1984年SWA最大贡献项空间分布(d)

    Fig.  6  Distribution of SWA in 2014 (a), distribution of SWA-changes in 2014 compared to 1984 (b), spatial distribution of the largest contributor to SWA in 2014 (c), and spatial distribution of the largest contributor to SWA in 1984 (d)

    图  7  2014年PCA各项分布(a,b)和2014年较1984年PCA各项变化分布(c,d)

    Fig.  7  Distribution of PCA contributors in 2014 (a, b) and distribution of PCA contributors changes in 2014 compared to 1984 (c, d)

    图  8  2014年SWA各项分布(a,b)和2014年较1984年SWA各项变化分布(c,d)

    Fig.  8  Distribution of SWA contributors in 2014 (a, b) and distribution of SWA contributors changes in 2014 compared to 1984 (c, d)

  • [1] Toublanc F, Brenon I, Coulombier T, et al. Fortnightly tidal asymmetry inversions and perspectives on sediment dynamics in a macrotidal estuary (Charente, France)[J]. Continental Shelf Research, 2015, 94: 42−54. doi: 10.1016/j.csr.2014.12.009
    [2] Friedrichs C T, Aubrey D G. Non-linear tidal distortion in shallow well-mixed estuaries: a synthesis[J]. Estuarine, Coastal and Shelf Science, 1988, 27(5): 521−545. doi: 10.1016/0272-7714(88)90082-0
    [3] Nidzieko N J. Tidal asymmetry in estuaries with mixed semidiurnal/diurnal tides[J]. Journal of Geophysical Research, 2010, 115(C8): C08006.
    [4] Nidzieko N J, Ralston D K. Tidal asymmetry and velocity skew over tidal flats and shallow channels within a macrotidal river delta[J]. Journal of Geophysical Research, 2012, 117(C3): C03001.
    [5] Song Dehai, Wang Xiaohua, Kiss A E, et al. The contribution to tidal asymmetry by different combinations of tidal constituents[J]. Journal of Geophysical Research, 2011, 116(C12): C12007. doi: 10.1029/2011JC007270
    [6] 李谊纯. 一个潮流不对称计算方法及其在北仑河口的应用[J]. 海洋工程, 2014, 32(4): 110−116.

    Li Yichun. A method of quantifying tidal current asymmetry and its application in the Beilun River estuary[J]. The Ocean Engineering, 2014, 32(4): 110−116.
    [7] Gong Wenping, Schuttelaars H, Zhang Heng. Tidal asymmetry in a funnel-shaped estuary with mixed semidiurnal tides[J]. Ocean Dynamics, 2016, 66(5): 637−658. doi: 10.1007/s10236-016-0943-1
    [8] Guo Leicheng, Brand M, Sanders B F, et al. Tidal asymmetry and residual sediment transport in a short tidal basin under sea level rise[J]. Advances in Water Resources, 2018, 121: 1−8. doi: 10.1016/j.advwatres.2018.07.012
    [9] 陈婷, 张蔚, 季小梅, 等. 长江口潮流不对称时空分布特征[J]. 长江科学院院报, 2021, 38(4): 7−12,18. doi: 10.11988/ckyyb.20200393

    Chen Ting, Zhang Wei, Ji Xiaomei, et al. Spatial-temporal characteristics of tidal current asymmetry in the Yangtze River Estuary[J]. Journal of Yangtze River Scientific Research Institute, 2021, 38(4): 7−12,18. doi: 10.11988/ckyyb.20200393
    [10] 任美锷. 江苏省海岸带和海涂资源综合调查报告[M]. 北京: 海洋出版社, 1985: 120-133.

    Ren Meie. Report for Comprehensive Investigation on Recourses of Coastal Zones and Tidal Flats in Jiangsu Province[M]. Beijing: China Ocean Press, 1985: 120-133.
    [11] 袁金金, 冯曦, 冯卫兵. 辐射沙洲地形对南黄海潮汐过程的影响[J]. 科学通报, 2018, 63(27): 2904−2918. doi: 10.1360/N972018-00125

    Yuan Jinjin, Feng Xi, Feng Weibing. Effects of radial sand ridges on tidal process in the South Yellow Sea[J]. Chinese Science Bulletin, 2018, 63(27): 2904−2918. doi: 10.1360/N972018-00125
    [12] 钱沛, 冯曦, 冯卫兵, 等. 辐射沙洲海域潮汐不对称对岸线变化的响应[J]. 水利水运工程学报, 2020(3): 51−60. doi: 10.12170/20190901002

    Qian Pei, Feng Xi, Feng Weibing, et al. Response of tidal asymmetry to coastline changes in radial sand ridges sea area[J]. Hydro-Science and Engineering, 2020(3): 51−60. doi: 10.12170/20190901002
    [13] Feng Xi, Feng Hui. On the role of anthropogenic activity and sea-level-rise in tidal distortion on the open coast of the Yellow Sea Shelf[J]. Journal of Geophysical Research, 2021, 126(3): e2020JC016583.
    [14] Feng Xi, Feng Hui, Li Huichao, et al. Tidal responses to future sea level trends on the Yellow Sea shelf[J]. Journal of Geophysical Research, 2019, 124(11): 7285−7306. doi: 10.1029/2019JC015150
    [15] Pawlowicz R, Beardsley B, Lentz S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE[J]. Computers & Geosciences, 2002, 28(8): 929−937.
  • 加载中
图(8)
计量
  • 文章访问数:  104
  • HTML全文浏览量:  29
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 修回日期:  2021-08-12
  • 网络出版日期:  2022-02-12

目录

    /

    返回文章
    返回