留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

海州湾秋季鱼类β多样性组分分析及其与环境因子的关系

李雪童 徐宾铎 薛莹 任一平 张崇良

李雪童,徐宾铎,薛莹,等. 海州湾秋季鱼类β多样性组分分析及其与环境因子的关系[J]. 海洋学报,2022,44(2):46–56 doi: 10.12284/hyxb2022048
引用本文: 李雪童,徐宾铎,薛莹,等. 海州湾秋季鱼类β多样性组分分析及其与环境因子的关系[J]. 海洋学报,2022,44(2):46–56 doi: 10.12284/hyxb2022048
Li Xuetong,Xu Binduo,Xue Ying, et al. β diversity and its components of the fish community in the Haizhou Bay during autumn and the relationships with environmental factors[J]. Haiyang Xuebao,2022, 44(2):46–56 doi: 10.12284/hyxb2022048
Citation: Li Xuetong,Xu Binduo,Xue Ying, et al. β diversity and its components of the fish community in the Haizhou Bay during autumn and the relationships with environmental factors[J]. Haiyang Xuebao,2022, 44(2):46–56 doi: 10.12284/hyxb2022048

海州湾秋季鱼类β多样性组分分析及其与环境因子的关系

doi: 10.12284/hyxb2022048
基金项目: 国家重点研发计划(2018YFD0900904)。
详细信息
    作者简介:

    李雪童(1995—),女,河北省保定市人,主要从事渔业资源研究。E-mail:13294097704@163.com

    通讯作者:

    张崇良,副教授,主要从事种群动力学研究。E-mail:zhangclg@ouc.edu.cn

  • 中图分类号: S932.4

β diversity and its components of the fish community in the Haizhou Bay during autumn and the relationships with environmental factors

  • 摘要: 由于过度捕捞等人类活动的胁迫,近年来海州湾渔业资源严重衰退。为了解海州湾鱼类β多样性的变化特征及其影响因素,本研究根据2013−2017年秋季在海州湾及其邻近海域进行的渔业资源底拖网调查数据,采用Sørenson相异性指数等方法计算了调查站位间以及海州湾海域整体的鱼类β多样性,并将β多样性分解为周转和嵌套两个组分,分析其时空变化特征。结合海州湾环境数据,采用广义非相似性模型分析海州湾鱼类β多样性及其组分与环境因子的关系。结果表明,海州湾鱼类β多样性及其周转和嵌套组分在年际间呈现不同程度的波动态势,浅水区的波动较为明显,深水区其次,海州湾整体则维持在较为稳定的状态;鱼类群落组成以周转模式变化。海水盐度和叶绿素a浓度是影响β多样性及其周转的主要因素,两者累计的模型偏差解释率分别为28.05%和23.33%,温度的影响相对较小;广义非相似性模型对嵌套组分的解释率较低。本研究深入解析了海州湾鱼类β多样性的时空特征及其影响因素,旨在为建立海洋保护区、优化海洋保护策略提供科学依据。
  • 图  1  海州湾及其邻近海域渔业资源调查站位

    Fig.  1  Sampling stations of the fishery resource surveys in the Haizhou Bay and its adjacent waters

    图  2  海州湾鱼类β多样性及其组分

    Fig.  2  β diversity and its components of fish species in the Haizhou Bay

    图  3  海州湾鱼类β多样性及其组分分布

    Fig.  3  Distributions of β diversity and its components of fish species in the Haizhou Bay

    图  4  预测变量对β多样性及其组分的贡献

    Fig.  4  Contributions of predictors to β diversity and its components

    图  5  广义非相似性模型分析β多样性的偏响应图

    Fig.  5  Partial response graphs of generalized dissimilarity modelling for analyzing β diversity

    表  1  海州湾及其邻近海域环境因子监测结果

    Tab.  1  Monitoring results of environmental factors in the Haizhou Bay and its adjacent waters

    环境因子平均值最大值最小值变异系数CV
    叶绿素 a浓度/(mg·m−3 2.28 4.28 0.660.44
    水深/m20.7129.0811.190.22
    水温/℃20.9325.0218.470.09
    盐度29.8031.9421.710.05
    下载: 导出CSV

    表  2  环境因子的Pearson相关系数

    Tab.  2  Pearson correlation coefficients between environmental factors

    环境因子盐度水温水深
    水温0.029
    水深 0.371** 0.149
    叶绿素 a浓度−0.598**−0.140−0.640**
      注:**代表p<0.01。
    下载: 导出CSV

    表  3  β多样性指数及其计算公式

    Tab.  3  Calculation formulas of β diversity indices

    β多样性指数公式
    站位间Sørenson相异性指数$ {\ \text{β} }_{{\rm{sor}}}=\dfrac{b+c}{2a+b+c} $
    站位间Sørenson指数中周转组分$ {\ \text{β} }_{{\rm{sim}}}=\dfrac{\mathrm{m}\mathrm{i}\mathrm{n}(b,c)}{a+\mathrm{m}\mathrm{i}\mathrm{n}(b,c)} $
    站位间Sørenson指数中嵌套组分$ {\ \text{β} }_{{\rm{nes}}}={\text{β} }_{{\rm{sor}}}-{\text{β} }_{{\rm{sim}}} $
    海域Sørenson相异性指数$ {\ \text{β} }_{{\rm{SOR}}}=\dfrac{\left[\displaystyle\sum _{i < j}\mathrm{m}\mathrm{i}\mathrm{n}({b}_{ij},{b}_{ji})\right]+\left[\displaystyle\sum _{i < j}\mathrm{m}\mathrm{a}\mathrm{x}({b}_{ij},{b}_{ji})\right]}{2\left[\displaystyle\sum _{i}{S}_{i}-{S}_{{\rm{T}}}\right]+\left[\displaystyle\sum _{i < j}\mathrm{m}\mathrm{i}\mathrm{n}({b}_{ij},{b}_{ji})\right]+\left[\displaystyle\sum _{i < j}\mathrm{m}\mathrm{a}\mathrm{x}({b}_{ij},{b}_{ji})\right]} $
    海域Sørenson指数中周转组分$ {\ \text{β} }_{{\rm{SIM}}}=\dfrac{\left[\displaystyle\sum _{i < j}\mathrm{m}\mathrm{i}\mathrm{n}({b}_{ij},{b}_{ji})\right]}{\left[\displaystyle\sum _{i}{S}_{i}-{S}_{{\rm{T}}}\right]+\left[\displaystyle\sum _{i < j}\mathrm{m}\mathrm{i}\mathrm{n}({b}_{ij},{b}_{ji})\right]} $
    海域Sørenson指数中嵌套组分$ {{\ \text{β} }_{{\rm{NES}}}=\text{β} }_{{\rm{SIM}}}-{\text{β} }_{{\rm{SOR}}} $
      注:βsorβsimβnet分别为站位间的β多样性、周转组分和嵌套组分;a为两个站位共有的物种数;bc分别为两个站位所特有的物种数;Si为站位i的物种数;ST为所有调查站位的物种总数;bijbji分别为站位ij所特有的物种数。
    下载: 导出CSV

    表  4  预测变量筛选结果

    Tab.  4  Screening results of predictors

    模型因子累计偏差解释率/%贡献率/%
    Model-βsor地理距离9.609.60
    叶绿素a浓度29.1419.54
    水深29.140.00
    水温30.010.86
    盐度38.528.51
    Model-βsim地理距离9.499.49
    叶绿素a浓度27.3217.83
    水深27.320.00
    水温27.510.19
    盐度33.015.50
    Model-βnes地理距离
    叶绿素a含量
    水深
    水温0.800.80
    盐度1.520.73
      注:地理距离由GDM计算得出,即欧氏距离;“−”表示该变量对模型拟合无效。
    下载: 导出CSV
  • [1] Whittaker R H. Vegetation of the Siskiyou mountains, oregon and California[J]. Ecological Monographs, 1960, 30(3): 279−338. doi: 10.2307/1943563
    [2] Whittaker R H. Evolution and measurement of species diversity[J]. Taxon, 1972, 21(2/3): 213−251.
    [3] Pressey R L, Humphries C J, Margules C R, et al. Beyond opportunism: key principles for systematic reserve selection[J]. Trends in Ecology & Evolution, 1993, 8(4): 124−128.
    [4] Margules C R, Pressey R L. Systematic conservation planning[J]. Nature, 2000, 405(6783): 243−253. doi: 10.1038/35012251
    [5] 陈圣宾, 欧阳志云, 徐卫华, 等. Beta多样性研究进展[J]. 生物多样性, 2010, 18(4): 323−335. doi: 10.3724/SP.J.1003.2010.323

    Chen Shengbin, Ouyang Zhiyun, Xu Weihua, et al. A review of beta diversity studies[J]. Biodiversity Science, 2010, 18(4): 323−335. doi: 10.3724/SP.J.1003.2010.323
    [6] 白永飞, 邢雪荣, 许志信, 等. 内蒙古高原针茅草原群落β多样性研究[J]. 应用生态学报, 2000, 11(3): 408−412. doi: 10.3321/j.issn:1001-9332.2000.03.020

    Bai Yongfei, Xing Xuerong, Xu Zhixin, et al. β-diversity of Stipa communities in Inner Mongolia Plateau[J]. Chinese Journal of Applied Ecology, 2000, 11(3): 408−412. doi: 10.3321/j.issn:1001-9332.2000.03.020
    [7] 杨婧, 褚鹏飞, 陈迪马, 等. 放牧对内蒙古典型草原α、β和γ多样性的影响机制[J]. 植物生态学报, 2014, 38(2): 188−200. doi: 10.3724/SP.J.1258.2014.00017

    Yang Jing, Chu Pengfei, Chen Dima, et al. Mechanisms underlying the impacts of grazing on plant α, β and γ diversity in a typical steppe of the Inner Mongolia grassland[J]. Chinese Journal of Plant Ecology, 2014, 38(2): 188−200. doi: 10.3724/SP.J.1258.2014.00017
    [8] 张东, 宛凤英, 储玲, 等. 青弋江鱼类分类群和功能群的α和β多样性纵向梯度格局[J]. 生物多样性, 2018, 26(1): 1−13. doi: 10.17520/biods.2017263

    Zhang Dong, Wan Fengying, Chu Ling, et al. Longitudinal patterns in α and β diversity of the taxonomic and functional organizations of stream fish assemblages in the Qingyi River[J]. Biodiversity Science, 2018, 26(1): 1−13. doi: 10.17520/biods.2017263
    [9] 戴美霞, 朱艺峰, 林霞, 等. 象山港浮游动物β多样性及其成分变化的环境因子解释[J]. 生态学报, 2017, 37(17): 5780−5789.

    Dai Meixia, Zhu Yifeng, Lin Xia, et al. Interpretation of environmental factors affecting zooplanktonic beta diversity and its components in Xiangshan Bay[J]. Acta Ecologica Sinica, 2017, 37(17): 5780−5789.
    [10] 朱艺峰, 戴美霞, 周晓红, 等. 环境因子对国华电厂温排水海域浮游动物群落β多样性的影响[J]. 应用生态学报, 2015, 26(8): 2543−2552.

    Zhu Yifeng, Dai Meixia, Zhou Xiaohong, et al. Effects of environmental factors on β diversity of zooplankton community in thermal discharge seawaters near Guohua Power Plant in Xiangshan Bay, Zhejiang, China[J]. Chinese Journal of Applied Ecology, 2015, 26(8): 2543−2552.
    [11] 中国海湾志编纂委员会. 中国海湾志: 第四分册——山东半岛南部和江苏省海湾[M]. 北京: 海洋出版社, 1993: 354−420.

    Editorial Board of China Bay Survey. Survey of China Bays (Vol. 4): Southern Shandong Peninsula and Gulf of Jiangsu Province[M]. Beijing: China Ocean Press, 1993: 354−420.
    [12] 隋昊志, 薛莹, 任一平, 等. 海州湾鱼类生态类群的研究[J]. 中国海洋大学学报(自然科学版), 2017, 47(12): 59−71.

    Sui Haozhi, Xue Ying, Ren Yiping, et al. Studies on the ecological groups of fish communities in Haizhou Bay, China[J]. Periodical of Ocean University of China, 2017, 47(12): 59−71.
    [13] 苏巍, 薛莹, 任一平. 海州湾海域鱼类分类多样性的时空变化及其与环境因子的关系[J]. 中国水产科学, 2013, 20(3): 624−634. doi: 10.3724/SP.J.1118.2013.00624

    Su Wei, Xue Ying, Ren Yiping. Temporal and spatial variation in taxonomic diversity of fish in Haizhou Bay: the effect of environmental factors[J]. Journal of Fishery Sciences of China, 2013, 20(3): 624−634. doi: 10.3724/SP.J.1118.2013.00624
    [14] Ferrier S, Manion G, Elith J, et al. Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment[J]. Diversity and Distributions, 2007, 13(3): 252−264. doi: 10.1111/j.1472-4642.2007.00341.x
    [15] Elith J, Graham C H, Anderson R P, et al. Novel methods improve prediction of species’ distributions from occurrence data[J]. Ecography, 2006, 29(2): 129−151. doi: 10.1111/j.2006.0906-7590.04596.x
    [16] Ferrier S, Powell G V N, Richardson K S, et al. Mapping more of terrestrial biodiversity for global conservation assessment[J]. BioScience, 2004, 54(12): 1101−1109. doi: 10.1641/0006-3568(2004)054[1101:MMOTBF]2.0.CO;2
    [17] Zhang Chongliang, Chen Yong, Xu Binduo, et al. How to predict biodiversity in space? An evaluation of modelling approaches in marine ecosystems[J]. Diversity and Distributions, 2019, 25(11): 1697−1708. doi: 10.1111/ddi.12970
    [18] Xu Binduo, Zhang Chongliang, Xue Ying, et al. Optimization of sampling effort for a fishery-independent survey with multiple goals[J]. Environmental Monitoring and Assessment, 2015, 187(5): 252. doi: 10.1007/s10661-015-4483-9
    [19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12763.6−2007, 海洋调查规范 第6部分: 海洋生物调查[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 12763.6−2007, Specifications for oceanographic survey—Part 6: Marine biological survey[S]. Beijing: Standards Press of China, 2008.
    [20] Chen Changsheng, Gao Guoping, Zhang Yu, et al. Circulation in the Arctic Ocean: results from a high-resolution coupled ice-sea nested Global-FVCOM and Arctic-FVCOM system[J]. Progress in Oceanography, 2016, 141: 60−80. doi: 10.1016/j.pocean.2015.12.002
    [21] Xing Qinwang, Yu Huaming, Yu Haiqing, et al. A comprehensive model-based index for identification of larval retention areas: a case study for Japanese anchovy Engraulis japonicus in the Yellow Sea[J]. Ecological Indicators, 2020, 116: 106479. doi: 10.1016/j.ecolind.2020.106479
    [22] Kleijnen J P C. Kriging metamodeling in simulation: a review[J]. European Journal of Operational Research, 2009, 192(3): 707−716. doi: 10.1016/j.ejor.2007.10.013
    [23] Harrison S, Ross S J, Lawton J H. Beta diversity on geographic gradients in Britain[J]. Journal of Animal Ecology, 1992, 61(1): 151−158. doi: 10.2307/5518
    [24] Baselga A, Jiménez-Valverde A, Niccolini G. A multiple-site similarity measure independent of richness[J]. Biology Letters, 2007, 3(6): 642−645. doi: 10.1098/rsbl.2007.0449
    [25] Baselga A. Partitioning the turnover and nestedness components of beta diversity[J]. Global Ecology and Biogeography, 2010, 19(1): 134−143. doi: 10.1111/j.1466-8238.2009.00490.x
    [26] Xu Rui, Wunsch D C. Survey of clustering algorithms[J]. IEEE Transactions on Neural Networks, 2005, 16(3): 645−678. doi: 10.1109/TNN.2005.845141
    [27] 李雪童, 徐宾铎, 薛莹, 等. 海州湾鱼类β多样性变化[J]. 中国水产科学, 2021, 28(4): 451−459.

    Li Xuetong, Xu Binduo, Xue Ying, et al. Variation in the β diversity of fish species in Haizhou Bay[J]. Journal of Fishery Sciences of China, 2021, 28(4): 451−459.
    [28] Sørensen T J. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons[J]. Kongelige Danske Videnskabernes Selskab, Biologiske Skrifter, 1948, 5: 1−34.
    [29] Simpson G G. Mammals and the nature of continents[J]. American Journal of Science, 1943, 241(1): 1−31. doi: 10.2475/ajs.241.1.1
    [30] Hintze J L, Nelson R D. Violin plots: a box plot-density trace synergism[J]. The American Statistician, 1998, 52(2): 181−184.
    [31] Overton J M, Barker G M, Price R. Estimating and conserving patterns of invertebrate diversity: a test case of New Zealand land snails[J]. Diversity and Distributions, 2009, 15(5): 731−741. doi: 10.1111/j.1472-4642.2009.00589.x
    [32] Leaper R, Hill N A, Edgar G J, et al. Predictions of beta diversity for reef macroalgae across southeastern Australia[J]. Ecosphere, 2011, 2(7): 1−18.
    [33] Ashcroft M B, Gollan J R, Faith D P, et al. Using generalised dissimilarity models and many small samples to improve the efficiency of regional and landscape scale invertebrate sampling[J]. Ecological Informatics, 2010, 5(2): 124−132. doi: 10.1016/j.ecoinf.2009.12.002
    [34] Fitzpatrick M C, Sanders N J, Normand S, et al. Environmental and historical imprints on beta diversity: insights from variation in rates of species turnover along gradients[J]. Proceedings of the Royal Society B: Biological Sciences, 2013, 280(1768): 20131201. doi: 10.1098/rspb.2013.1201
    [35] Patterson B D, Brown J H. Regionally nested patterns of species composition in granivorous rodent assemblages[J]. Journal of Biogeography, 1991, 18(4): 395−402. doi: 10.2307/2845481
    [36] Oikonomou A, Stefanidis K. α- and β-diversity patterns of macrophytes and freshwater fishes are driven by different factors and processes in lakes of the unexplored Southern Balkan biodiversity hotspot[J]. Water, 2020, 12(7): 1984. doi: 10.3390/w12071984
    [37] Lansac-Tôha F M, Heino J, Quirino B A, et al. Differently dispersing organism groups show contrasting beta diversity patterns in a dammed subtropical river basin[J]. Science of the Total Environment, 2019, 691: 1271−1281. doi: 10.1016/j.scitotenv.2019.07.236
    [38] Pachauri R K, Allen M R, Barros V R, et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Geneva, Switzerland: IPCC, 2014.
    [39] Yin Jie, Xu Jun, Xue Ying, et al. Evaluating the impacts of El Niño events on a marine bay ecosystem based on selected ecological network indicators[J]. Science of the Total Environment, 2021, 763: 144205. doi: 10.1016/j.scitotenv.2020.144205
    [40] Koubbi P, Moteki M, Duhamel G, et al. Ecoregionalization of myctophid fish in the Indian sector of the Southern Ocean: results from generalized dissimilarity models[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2011, 58(1/2): 170−180.
    [41] Georgopoulou E, Neubauer T A, Harzhauser M, et al. Distribution patterns of European lacustrine gastropods: a result of environmental factors and deglaciation history[J]. Hydrobiologia, 2016, 775(1): 69−82. doi: 10.1007/s10750-016-2713-y
    [42] Xue Ying, Guan Lisha, Tanaka K, et al. Evaluating effects of rescaling and weighting data on habitat suitability modeling[J]. Fisheries Research, 2017, 188: 84−94. doi: 10.1016/j.fishres.2016.12.001
    [43] Zhang Yunlei, Yu Huaming, Yu Haiqing, et al. Optimization of environmental variables in habitat suitability modeling for mantis shrimp Oratosquilla oratoria in the Haizhou Bay and adjacent waters[J]. Acta Oceanologica Sinica, 2020, 39(6): 36−47. doi: 10.1007/s13131-020-1546-8
    [44] Li Bai, Tanaka K R, Chen Yong, et al. Assessing the quality of bottom water temperatures from the Finite-Volume Community Ocean Model (FVCOM) in the Northwest Atlantic Shelf region[J]. Journal of Marine Systems, 2017, 173: 21−30. doi: 10.1016/j.jmarsys.2017.04.001
    [45] Zhang Yunlei, Xu Binduo, Ji Yupeng, et al. Comparison of habitat models in quantifying the spatio-temporal distribution of small yellow croaker (Larimichthys polyactis) in Haizhou Bay, China[J]. Estuarine, Coastal and Shelf Science, 2021, 261: 107512. doi: 10.1016/j.ecss.2021.107512
    [46] 栾静, 张崇良, 徐宾铎, 等. 海州湾双斑蟳栖息分布特征与环境因子的关系[J]. 水产学报, 2018, 42(6): 889−901.

    Luan Jing, Zhang Chongliang, Xu Binduo, et al. Relationship between catch distribution of Portunid crab (Charybdis bimaculata) and environmental factors based on three species distribution models in Haizhou Bay[J]. Journal of Fisheries of China, 2018, 42(6): 889−901.
    [47] 张云雷, 薛莹, 于华明, 等. 海州湾春季皮氏叫姑鱼栖息地适宜性研究[J]. 海洋学报, 2018, 40(6): 83−91.

    Zhang Yunlei, Xue Ying, Yu Huaming, et al. Study on the habitat suitability of Johnius belangerii during spring in the Haizhou Bay, China[J]. Haiyang Xuebao, 2018, 40(6): 83−91.
    [48] 徐兆礼. 中国近海浮游动物多样性研究的过去和未来[J]. 生物多样性, 2011, 19(6): 635−645.

    Xu Zhaoli. The past and the future of zooplankton diversity studies in China seas[J]. Biodiversity Science, 2011, 19(6): 635−645.
    [49] Yemane D, Field J G, Leslie R W. Spatio-temporal patterns in the diversity of demersal fish communities off the south coast of South Africa[J]. Marine Biology, 2010, 157(2): 269−281. doi: 10.1007/s00227-009-1314-y
    [50] Stefansdottir L, Solmundsson J, Marteinsdottir G, et al. Groundfish species diversity and assemblage structure in Icelandic waters during recent years of warming[J]. Fisheries Oceanography, 2010, 19(1): 42−62. doi: 10.1111/j.1365-2419.2009.00527.x
    [51] Nekola J C, White P S. The distance decay of similarity in biogeography and ecology[J]. Journal of Biogeography, 1999, 26(4): 867−878. doi: 10.1046/j.1365-2699.1999.00305.x
    [52] Blois J L, Williams J W, Fitzpatrick M C, et al. Modeling the climatic drivers of spatial patterns in vegetation composition since the Last Glacial Maximum[J]. Ecography, 2013, 36(4): 460−473. doi: 10.1111/j.1600-0587.2012.07852.x
    [53] Garcia J, Pelletier D, Carpentier L, et al. Scale-dependency of the environmental influence on fish β-diversity: implications for ecoregionalization and conservation[J]. Journal of Biogeography, 2018, 45(8): 1818−1832. doi: 10.1111/jbi.13381
    [54] Fisher J A D, Frank K T, Petrie B, et al. Temporal dynamics within a contemporary latitudinal diversity gradient[J]. Ecology Letters, 2008, 11(9): 883−897. doi: 10.1111/j.1461-0248.2008.01216.x
    [55] Anderson M J, Tolimieri N, Millar R B. Beta diversity of demersal fish assemblages in the North-Eastern Pacific: interactions of latitude and depth[J]. PLoS ONE, 2013, 8(3): e57918. doi: 10.1371/journal.pone.0057918
    [56] Magurran A E, Dornelas M, Moyes F, et al. Rapid biotic homogenization of marine fish assemblages[J]. Nature Communications, 2015, 6(1): 8405. doi: 10.1038/ncomms9405
    [57] 陈兵, 孟雪晨, 张东, 等. 河流鱼类分类群和功能群的纵向梯度格局——以新安江流域为例[J]. 生态学报, 2019, 39(15): 5730−5745.

    Chen Bing, Meng Xuechen, Zhang Dong, et al. Longitudinal patterns in taxonomic and functional organizations of fish assemblages in the Xin’an River[J]. Acta Ecologica Sinica, 2019, 39(15): 5730−5745.
    [58] Carvalho R A, Teresa F B, Tejerina-Garro F L. The effect of riverine networks on fish β-diversity patterns in a Neotropical system[J]. Hydrobiologia, 2021, 848(2): 515−529. doi: 10.1007/s10750-020-04459-9
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  73
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28
  • 修回日期:  2021-11-01
  • 网络出版日期:  2021-12-08
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回