留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

UTEVA树脂分离纯化珊瑚中铀、钍的改进研究

汤震宇 瞿建国 张安余 李秀保 杜金洲

汤震宇,瞿建国,张安余,等. UTEVA树脂分离纯化珊瑚中铀、钍的改进研究[J]. 海洋学报,2022,44(2):11–20 doi: 10.12284/hyxb2022046
引用本文: 汤震宇,瞿建国,张安余,等. UTEVA树脂分离纯化珊瑚中铀、钍的改进研究[J]. 海洋学报,2022,44(2):11–20 doi: 10.12284/hyxb2022046
Tang Zhenyu,Qu Jianguo,Zhang Anyu, et al. Modified method of separation and purification of U, Th in coral sample with UTEVA resin[J]. Haiyang Xuebao,2022, 44(2):11–20 doi: 10.12284/hyxb2022046
Citation: Tang Zhenyu,Qu Jianguo,Zhang Anyu, et al. Modified method of separation and purification of U, Th in coral sample with UTEVA resin[J]. Haiyang Xuebao,2022, 44(2):11–20 doi: 10.12284/hyxb2022046

UTEVA树脂分离纯化珊瑚中铀、钍的改进研究

doi: 10.12284/hyxb2022046
基金项目: 河口海岸学国家重点实验室开放课题(2019RCDW04,SKLEC-KF201907)
详细信息
    作者简介:

    汤震宇(1993—),男,江西省鄱阳县人,主要从事痕量U、Th浓度及同位素比值方法开发。E-mail: zytang93@163.com

    通讯作者:

    瞿建国,副教授,主要从事电感耦合等离子质谱分析技术及其对环境和地质等样品中痕量元素浓度、同位素分析技术方法的开发和应用研究。E-mail: jgqu@des.ecnu.edu.cn

  • 中图分类号: P714+.4;P734.2+4

Modified method of separation and purification of U, Th in coral sample with UTEVA resin

  • 摘要: 珊瑚是记录海洋环境变化信息的载体之一,测定其U/Ca比值可重建海水温度或测定Th/U同位素比值可计算年龄重建海平面高度等。准确测定珊瑚中U、Th含量及同位素比值是提取所记载的海洋环境变化信息的前提,其难点在于高Ca基体分离和痕量U、Th富集纯化。基于此,本研究拟采用UTEVA树脂改进了一步富集分离珊瑚中U、Th的前处理方法,并联合高分辨电感耦合等离子体质谱仪测定U、Th含量。结果证明:上样介质HNO3浓度由3 mol/L降至2 mol/L不影响U、Th的吸附效率,用2 mL Milli-Q水可将U完全洗脱,U、Th的全流程空白值(mean±1σ, n =12)分别为(1.32±0.65) pg、(2.05±0.63)pg,显著降低了U的全流程空白值。测定了3个海南滨珊瑚中U含量(mean±1σn=6),分别为(3.46±0.02 )μg/g、(2.67±0.05)μg/g、(2.15±0.07)μg/g,Th含量(mean±1σn=6)分别为(10.12±0.24)ng/g、(4.82±0.10)ng/g、(5.62±0.12)ng/g,测定精度均在3.3%以内,U、Th加标回收率分别为97.9%~100.9%、97.3%~99.7%,方法准确度高,精密度好。本研究可为测定珊瑚等碳酸盐类样品中U、Th含量及其同位素提供准确、简便和快速的样品前处理方法。
  • 图  1  珊瑚样品中U、Th分离纯化流程

    Fig.  1  The flow of U, Th separation and purification in coral sample

    图  2  HNO3浓度对U、Th吸附效率的影响

    Fig.  2  The effect of HNO3 concentration on U, Th absorption efficiency

    图  3  HCl浓度对U、Th洗脱效率的影响

    Fig.  3  The effect of HCl concentration on the U, Th elution efficiency

    图  4  HCl浓度对U洗脱效率的影响

    Fig.  4  The effect of HCl concentration on U elution efficiency

    图  5  基体元素的清洗及分离效果

    Fig.  5  The efficiency of matrix elements washing and separation

    图  6  Ca基体对U、Th测定的影响

    Fig.  6  The effect of residue Ca matrix on U, Th measurement

    表  1  不同浓度HNO3、HCl介质中U和Th在UTEVA树脂上的吸附系数

    Tab.  1  Absorption coefficient of U and Th on UTEVA resin with different concentrations of HNO3 and HCl

    HNO3浓度/
    (mol·L−1
    吸附系数HCl浓度/
    (mol·L−1
    吸附系数
    KdThKdUKdThKdU
    1.0 28 60 0.5 0.9
    2.0 50 120 1.0 5×10−2 1
    3.0 70 200 2.0 8×10−2 6
    4.0 120 230 2.5 10×10−2 15
    5.0 170 290 3.0 11×10−2 20
    6.0 180 295 4.0 16×10−2 60
    7.0 200 300 5.0 30×10−2 100
      注:表中U、Th吸附系数参考文献[21]的吸附系数变化趋势图;−代表0.5 mol/L HCl介质下Th吸附系数没有具体数值。
    下载: 导出CSV

    表  2  实验器材

    Tab.  2  Experimental equipment

    器材名称规格/型号生产厂家
    电感耦合等离子体质谱仪Element 2德国Thermo Electron公司
    PFA微型柱15 mL南京滨正红公司
    PFA溶样杯6 mL南京滨正红公司
    痕量元素分离纯化Teflon工作台/自主设计[26]
    Teflon电热板定制南京滨正红公司
    FEP瓶60 mL、500 mL美国Thermo公司
    LDPE瓶15 mL、30 mL、
    60 mL、125 mL
    美国Thermo公司
    PFA对瓶酸平衡装置/美国Savillex公司
    石英亚沸蒸馏器/金坛晶玻实验仪器厂
    高型烧杯1 L环球公司
    移液器100 μL、1 mL美国Thermo公司
    电子天平精确至0.000 01g德国Sartorius公司
    下载: 导出CSV

    表  3  实验试剂

    Tab.  3  Experimental reagent

    试剂名称级别/浓度生产厂家
    HNO3高纯自主提纯
    HCl高纯自主提纯
    HF>99.999%美国Sigma公司
    HClO4>99.999%美国Sigma公司
    H2O2优级纯国药化学试剂公司
    CaCO3≥99.999%美国Sigma公司
    Ca标准溶液1 000 μg/mL (5% HNO3)美国J. T. Baker公司
    Mg标准溶液1 000 μg/mL (5% HNO3)美国J. T. Baker公司
    Sr标准溶液1 000 μg/mL (2% HNO3)美国J. T. Baker公司
    Sc标准溶液1 000 μg/mL (2% HNO3)美国Spex公司
    Tl标准溶液1 000 μg/mL (2% HNO3)美国Spex公司
    Th标准溶液1 000 μg/mL (2% HNO3)美国Spex公司
    U标准溶液1 000 μg/mL (2% HNO3)美国Spex公司
    Milli-Q水18.2 MΩ·cm美国Millipore公司
    UTEVA树脂分析级 (50~100 μm、
    100~150 μm)
    法国TRISKEM International公司
      注:MΩ·cm为Milli-Q水电阻率单位。
    下载: 导出CSV

    表  4  Element 2最佳工作参数

    Tab.  4  Optimized operational parameters of Element 2

    仪器运行参数数据获取参数
    射频功率/W1 200质量窗口/%15
    分辨率/(M·△M−1)300扫描步长100
    辅助气流量/(L·min−1)1.000积分时间/s232Th: 0.100,
    238U: 0.100,
    205 Tl: 0.050
    样品气流量/(L·min−1)约1.12积分窗口/%15
    样品提取流速/(μL·min−1)约50检测模式Counting
    扫描类型Escan扫描次数3×4
      注:M/△M为质谱仪中分辨率的单位。
    下载: 导出CSV

    表  5  不同粒径的UTEVA对U、Th的分离效果

    Tab.  5  Different particle size of UTEVA resin on U, Th separation efficiency

    粒径/μm全流程耗时/h回收率/% (mean±1σ, n=3)参考文献
    ThU
    100~150/9090文献[22]
    100~150/9090文献[31]
    50~100/75~10075~100文献[24]
    50~100约391.3±1.496.1±3.0本方法
    100~150约1.589.7±1.694.9±2.3本方法
    下载: 导出CSV

    表  6  U、Th全流程空白值

    Tab.  6  Procedure blank of U, Th

    前处理方法Th含量/pgU含量/pg文献
    Fe(OH)3+AG 1–X8+UTEVA150.025.0文献[20]
    UTEVA约2.0约10.0文献[36]
    UTEVA2.05±0.63
    (mean±1σ, n=12)
    1.32±0.65
    (mean±1σ, n=12)
    本研究
    下载: 导出CSV

    表  7  U、Th回收率与相对标准误差

    Tab.  7  U, Th recovery and relative standard error

    元素日期测定值/ng平均值/ ng (mean±1σ, n=11)相对标
    准误差/%
    n=11)
    平均回
    收率/%
    (n=11)
    Th2021年4月12日
    0.544±0.012
    (n=3, 1σ)
    0.554±0.0163.092.3
    2021年4月22日0.566±0.019
    (n=4, 1σ)
    2021年4月26日0.549±0.011 (n=4, 1σ)
    U2021年4月12日94.7±2.00
    (n=3, 1σ)
    95.5±1.61.795.5
    2021年4月22日96.5±1.42
    (n=4, 1σ)
    2021年4月26日95.3±1.33
    (n=4, 1σ)
    下载: 导出CSV

    表  8  海南滨珊瑚样品中U、Th含量

    Tab.  8  U, Th contents in Hainan coral samples

    样品编号
    元素
    取样量/
    mg
    称取样品测定值/ng
    (mean±1σ, n=6)
    精度
    /%
    珊瑚中含量/(μg·g−1)
    (mean±1σ, n=6)
    标准加入量/
    ng
    加标后测定值/ng
    (mean±1σ, n=6)
    加标回收率/%
    (mean±1σ, n=6)
    Coral-1Th500.506±0.0122.0(10.12±0.24)×10−30.5000.992±0.02398.6±2.2
    U50172.9±1.10.63.46±0.02150.0325.8±4.8100.9±1.5
    Coral-2Th500.241±0.0052.1(4.82±0.10)×10−30.5000.739±0.02199.7±1.0
    U50133.4±2.21.72.67±0.05150.0277.4±1.997.9±1.0
    Coral-3Th500.281±0.0061.8(5.62±0.12)×10−30.5000.760±0.01797.3±2.3
    U50107.2±3.63.32.15±0.07150.0255.2±1.299.2±0.5
    下载: 导出CSV
  • [1] Oppenheimer M, Glavovic B C, Hinkel J, et al. Chapter 4: sea level rise and implications for low-lying islands, coasts and communities[R]. Cambridge: Cambridge University Press, 2019: 321−425.
    [2] Bindoff N L, Coauthors. Chapter 5: changing ocean, marine ecosystems, and dependent communities[R]. Cambridge: Cambridge University Press, 2019: 447−587.
    [3] Collins M, Sutherland M, Bouwer L, et al. Chapter 6: extremes, abrupt changes and managing risks[R]. Cambridge: Cambridge University Press, 2019: 589−655.
    [4] 王朋岭, 黄磊, 巢清尘, 等. IPCC SROCC的主要结论和启示[J]. 气候变化研究进展, 2020, 16(2): 133−142.

    Wang Pengling, Huang Lei, Chao Qingchen, et al. The main content and insights of IPCC special report on the ocean and cryosphere in a changing climate (SROCC)[J]. Climate Change Research, 2020, 16(2): 133−142.
    [5] Inoue M, Suwa R, Suzuki A, et al. Effects of seawater pH on growth and skeletal U/Ca ratios of Acropora digitifera coral polyps[J]. Geophysical Research Letters, 2011, 38(12): L12809.
    [6] DeCarlo T M, Gaetani G A, Holcomb M, et al. Experimental determination of factors controlling U/Ca of aragonite precipitated from seawater: implications for interpreting coral skeleton[J]. Geochimica et Cosmochimica Acta, 2015, 162: 151−165. doi: 10.1016/j.gca.2015.04.016
    [7] Raddatz J, Liebetrau V, Trotter J, et al. Environmental constraints on Holocene cold-water coral reef growth off Norway: insights from a multiproxy approach[J]. Paleoceanography, 2016, 31(10): 1350−1367. doi: 10.1002/2016PA002974
    [8] Wei Gangjian, Sun Min, Li Xianhua, et al. Mg/Ca, Sr/Ca and U/Ca ratios of a porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162(1/2): 59−74.
    [9] Lawrence Edwards R, Chen J H, Wasserburg G J. 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500, 000 years[J]. Earth and Planetary Science Letters, 1987, 81(2/3): 175−192.
    [10] Kench P S, McLean R F, Owen S D, et al. Climate-forced sea-level lowstands in the Indian Ocean during the last two millennia[J]. Nature Geoscience, 2020, 13(1): 61−64. doi: 10.1038/s41561-019-0503-7
    [11] Yu Kefu, Zhao Jianxin, Collerson K D, et al. Storm cycles in the last millennium recorded in Yongshu Reef, southern South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 210(1): 89−100. doi: 10.1016/j.palaeo.2004.04.002
    [12] Yu Kefu, Zhao Jianxin, Shi Qi, et al. Reconstruction of storm/tsunami records over the last 4 000 years using transported coral blocks and lagoon sediments in the southern South China Sea[J]. Quaternary International, 2009, 195(1/2): 128−137.
    [13] Zhao Jianxin, Neil D T, Feng Yuexing, et al. High-precision U-series dating of very young cyclone-transported coral reef blocks from Heron and Wistari reefs, southern Great Barrier Reef, Australia[J]. Quaternary International, 2009, 195(1/2): 122−127.
    [14] Cobb K M, Charles C D, Cheng Hai, et al. El Niño/Southern Oscillation and tropical Pacific climate during the last millennium[J]. Nature, 2003, 424(6946): 271−276. doi: 10.1038/nature01779
    [15] Cobb K M, Charles C D, Cheng Hai, et al. U/Th-dating living and young fossil corals from the central tropical Pacific[J]. Earth and Planetary Science Letters, 2003, 210(1/2): 91−103.
    [16] Abraram N J, Wright N M, Ellis B, et al. Coupling of Indo-Pacific climate variability over the last millennium[J]. Nature, 2020, 579(7799): 385−392. doi: 10.1038/s41586-020-2084-4
    [17] Yu Kefu, Zhao Jianxin, Shi Qi, et al. U-series dating of dead Porites corals in the South China Sea: evidence for episodic coral mortality over the past two centuries[J]. Quaternary Geochronology, 2006, 1(2): 129−141. doi: 10.1016/j.quageo.2006.06.005
    [18] Zheng Jian, Yamada M. Determination of U isotope ratios in sediments using ICP-QMS after sample cleanup with anion-exchange and extraction chromatography[J]. Talanta, 2006, 68(3): 932−939. doi: 10.1016/j.talanta.2005.06.065
    [19] Shen Chuanchou, Wu Chungche, Cheng Hai, et al. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols[J]. Geochimica et Cosmochimica Acta, 2012, 99: 71−86. doi: 10.1016/j.gca.2012.09.018
    [20] Pons-Branchu E, Hillaire-Marcel C, Deschamps P, et al. Early diagenesis impact on precise U-series dating of deep-sea corals: Example of a 100–200-year old Lophelia pertusa sample from the northeast Atlantic[J]. Geochimica et Cosmochimica Acta, 2005, 69(20): 4865−4879. doi: 10.1016/j.gca.2005.06.011
    [21] Philip Horwitz E, Dieta M L, Chiarizia R, et al. Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions[J]. Analytica Chimica Acta, 1995, 310(1): 63−78. doi: 10.1016/0003-2670(95)00144-O
    [22] Yokoyama T, Makishima A, Nakamura E. Separation of thorium and uranium from silicate rock samples using two commercial extraction chromatographic resins[J]. Analytical Chemistry, 1999, 71(1): 135−141. doi: 10.1021/ac9805807
    [23] Douville E, Sallé E, Frank N, et al. Rapid and accurate U–Th dating of ancient carbonates using inductively coupled plasma-quadrupole mass spectrometry[J]. Chemical Geology, 2010, 272(1/4): 1−11.
    [24] 廖泽波, 邵庆丰, 李春华, 等. MC-ICP-MS标样−样品交叉测试法测定石笋样品的230Th/U年龄[J]. 质谱学报, 2018, 39(3): 295−309. doi: 10.7538/zpxb.2017.0072

    Liao Zebo, Shao Qingfeng, Li Chunhua, et al. Measurement of U/Th isotopic compositions in stalagmites for 230Th/U geochronology using MC-ICP-MS by standard-sample bracketing method[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(3): 295−309. doi: 10.7538/zpxb.2017.0072
    [25] Shao Qingfeng, Pons-Branchu E, Zhu Qiuping, et al. High precision U/Th dating of the rock paintings at Mt. Huashan, Guangxi, southern China[J]. Quaternary Research, 2017, 88(1): 1−13. doi: 10.1017/qua.2017.24
    [26] 瞿建国, 汤震宇. 一种高度可调用于富集分离痕量元素的工作台: 201910822494.4[P]. 2019−11−08.

    Qu Jianguo, Tang Zhenyu. A adjustable height workable applied on separation and purification trace element: 201910822494.4[P]. 2019−11−08.
    [27] 袁影, 王思广. 电感耦合等离子体质谱法测定单晶铜中痕量放射性核素钍和铀的含量[J]. 核技术, 2018, 41(9): 21−26.

    Yuan Ying, Wang Siguang. Determination of thorium and uranium in copper using inductively coupled plasma mass spectrometry[J]. Nuclear Techniques, 2018, 41(9): 21−26.
    [28] 唐爱玲. 生物碳酸盐中硫同位素组成分析及其应用[D]. 上海: 华东师范大学, 2013.

    Tang Ailing. Sulfur isotopic composition analysis of biogenic carbonates and its applications[D]. Shanghai: East China Normal University, 2013.
    [29] Shen Chuanchou, Li Kueishu, Sieh K, et al. Variation of initial 230Th/232Th and limits of high precision U–Th dating of shallow-water corals[J]. Geochimica et Cosmochimica Acta, 2008, 72(17): 4201−4223. doi: 10.1016/j.gca.2008.06.011
    [30] Shen Chuanchou, Lawrence Edwards R, Cheng Hai, et al. Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry[J]. Chemical Geology, 2002, 185(3/4): 165−178.
    [31] Veerasamy N, Takamasa A, Murugan R, et al. Chemical separation of uranium and precise measurement of 234U/238U and 235U/238U ratios in soil samples using multi collector inductively coupled plasma mass spectrometry[J]. Molecules, 2020, 25(9): 2138. doi: 10.3390/molecules25092138
    [32] Mitsuguchi T, Uchida T, Matsumoto E, et al. Variations in Mg/Ca, Na/Ca, and Sr/Ca ratios of coral skeletons with chemical treatments: implications for carbonate geochemistry[J]. Geochimica et Cosmochimica Acta, 2001, 65(17): 2865−2874. doi: 10.1016/S0016-7037(01)00626-3
    [33] Reynaud S, Ferrier-Pagès C, Meibom A, et al. Light and temperature effects on Sr/Ca and Mg/Ca ratios in the scleractinian coral Acropora sp.[J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 354−362. doi: 10.1016/j.gca.2006.09.009
    [34] Mitsuguchi T, Dang P X, Kitagawa H, et al. Coral Sr/Ca and Mg/Ca records in Con Dao Island off the Mekong Delta: assessment of their potential for monitoring ENSO and East Asian monsoon[J]. Global and Planetary Change, 2008, 63(4): 341−352. doi: 10.1016/j.gloplacha.2008.08.002
    [35] Raddatz J, Liebetrau V, Rüggeberg A, et al. Stable Sr-isotope, Sr/Ca, Mg/Ca, Li/Ca and Mg/Li ratios in the scleractinian cold-water coral Lophelia pertusa[J]. Chemical Geology, 2013, 352: 143−152. doi: 10.1016/j.chemgeo.2013.06.013
    [36] Shao Qingfeng, Ge Junyi, Ji Qiang, et al. Geochemical provenancing and direct dating of the Harbin archaic human cranium[J]. The Innovation, 2021, 2(3): 100131. doi: 10.1016/j.xinn.2021.100131
    [37] Clark T R, Roff G, Zhao Jianxin, et al. Testing the precision and accuracy of the U-Th chronometer for dating coral mortality events in the last 100 years[J]. Quaternary Geochronology, 2014, 23: 35−45. doi: 10.1016/j.quageo.2014.05.002
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  333
  • HTML全文浏览量:  73
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-18
  • 修回日期:  2021-11-07
  • 网络出版日期:  2021-12-09
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回