Modified method of separation and purification of U, Th in coral sample with UTEVA resin
-
摘要: 珊瑚是记录海洋环境变化信息的载体之一,测定其U/Ca比值可重建海水温度或测定Th/U同位素比值可计算年龄重建海平面高度等。准确测定珊瑚中U、Th含量及同位素比值是提取所记载的海洋环境变化信息的前提,其难点在于高Ca基体分离和痕量U、Th富集纯化。基于此,本研究拟采用UTEVA树脂改进了一步富集分离珊瑚中U、Th的前处理方法,并联合高分辨电感耦合等离子体质谱仪测定U、Th含量。结果证明:上样介质HNO3浓度由3 mol/L降至2 mol/L不影响U、Th的吸附效率,用2 mL Milli-Q水可将U完全洗脱,U、Th的全流程空白值(mean±1σ, n =12)分别为(1.32±0.65) pg、(2.05±0.63)pg,显著降低了U的全流程空白值。测定了3个海南滨珊瑚中U含量(mean±1σ,n=6),分别为(3.46±0.02 )μg/g、(2.67±0.05)μg/g、(2.15±0.07)μg/g,Th含量(mean±1σ,n=6)分别为(10.12±0.24)ng/g、(4.82±0.10)ng/g、(5.62±0.12)ng/g,测定精度均在3.3%以内,U、Th加标回收率分别为97.9%~100.9%、97.3%~99.7%,方法准确度高,精密度好。本研究可为测定珊瑚等碳酸盐类样品中U、Th含量及其同位素提供准确、简便和快速的样品前处理方法。
-
关键词:
- 珊瑚 /
- 铀 /
- 钍 /
- UTEVA树脂 /
- 电感耦合等离子体质谱法
Abstract: Corals are one of the carriers for recording information about changes in the marine environment. For example, determining U/Ca to reconstruction of sea water temperature or measure the Th/U isotopic ratio for dating to reconstruction sea level etc. However, measuring the U and Th contents and isotopic ratio of corals is a prerequisite for extracting the recorded marine environmental change information, the difficulty lies in the separation of Ca matrix and enrichment and purification of trace U and Th. Based on this, this study modified the pretreatment method of separation and purification U and Th with single column stage of UTEVA resin, and then combined with high resolution inductively coupled plasma mass spectrometry to determine U and Th contents of corals. The results demonstrate that the HNO3 medium concentration decrease from 3 mol/L to 2 mol/L will not affect the absorption efficiency of U and Th; 2 mL Milli-Q water can completely elute U, which significantly reduces the procedure blank value of the entire process of U; the improved method is used to determine the U and Th contents of three Hainan littoral corals (n=6, 1σ): U are (3.46±0.02)μg/g, (2.67±0.05)μg/g, (2.15±0.07)μg/g, respectively, Th are (10.12±0.24)ng/g, (4.82±0.10)ng/g, (5.65±0.12)ng/g, respectively; and the determination accuracy is below 3.3%, recovery rate of standard addition of U, Th are 97.9%–100.9%, 97.3%–99.7%, respectively. The method has high accuracy and good precision. This study provides a more accurate, convenient and rapid experimental method for the analysis of U and Th content and isotopic ratio in corals and other carbonate samples.-
Key words:
- coral /
- U /
- Th /
- UTEVA resin /
- inductively coupled plasma mass spectrometry (ICP–MS)
-
表 1 不同浓度HNO3、HCl介质中U和Th在UTEVA树脂上的吸附系数
Tab. 1 Absorption coefficient of U and Th on UTEVA resin with different concentrations of HNO3 and HCl
HNO3浓度/
(mol·L−1)吸附系数 HCl浓度/
(mol·L−1)吸附系数 KdTh KdU KdTh KdU 1.0 28 60 0.5 − 0.9 2.0 50 120 1.0 5×10−2 1 3.0 70 200 2.0 8×10−2 6 4.0 120 230 2.5 10×10−2 15 5.0 170 290 3.0 11×10−2 20 6.0 180 295 4.0 16×10−2 60 7.0 200 300 5.0 30×10−2 100 注:表中U、Th吸附系数参考文献[21]的吸附系数变化趋势图;−代表0.5 mol/L HCl介质下Th吸附系数没有具体数值。 表 2 实验器材
Tab. 2 Experimental equipment
器材名称 规格/型号 生产厂家 电感耦合等离子体质谱仪 Element 2 德国Thermo Electron公司 PFA微型柱 15 mL 南京滨正红公司 PFA溶样杯 6 mL 南京滨正红公司 痕量元素分离纯化Teflon工作台 / 自主设计[26] Teflon电热板 定制 南京滨正红公司 FEP瓶 60 mL、500 mL 美国Thermo公司 LDPE瓶 15 mL、30 mL、
60 mL、125 mL美国Thermo公司 PFA对瓶酸平衡装置 / 美国Savillex公司 石英亚沸蒸馏器 / 金坛晶玻实验仪器厂 高型烧杯 1 L 环球公司 移液器 100 μL、1 mL 美国Thermo公司 电子天平 精确至0.000 01g 德国Sartorius公司 表 3 实验试剂
Tab. 3 Experimental reagent
试剂名称 级别/浓度 生产厂家 HNO3 高纯 自主提纯 HCl 高纯 自主提纯 HF >99.999% 美国Sigma公司 HClO4 >99.999% 美国Sigma公司 H2O2 优级纯 国药化学试剂公司 CaCO3 ≥99.999% 美国Sigma公司 Ca标准溶液 1 000 μg/mL (5% HNO3) 美国J. T. Baker公司 Mg标准溶液 1 000 μg/mL (5% HNO3) 美国J. T. Baker公司 Sr标准溶液 1 000 μg/mL (2% HNO3) 美国J. T. Baker公司 Sc标准溶液 1 000 μg/mL (2% HNO3) 美国Spex公司 Tl标准溶液 1 000 μg/mL (2% HNO3) 美国Spex公司 Th标准溶液 1 000 μg/mL (2% HNO3) 美国Spex公司 U标准溶液 1 000 μg/mL (2% HNO3) 美国Spex公司 Milli-Q水 18.2 MΩ·cm 美国Millipore公司 UTEVA树脂 分析级 (50~100 μm、
100~150 μm)法国TRISKEM International公司 注:MΩ·cm为Milli-Q水电阻率单位。 表 4 Element 2最佳工作参数
Tab. 4 Optimized operational parameters of Element 2
仪器运行参数 数据获取参数 射频功率/W 1 200 质量窗口/% 15 分辨率/(M·△M−1) 300 扫描步长 100 辅助气流量/(L·min−1) 1.000 积分时间/s 232Th: 0.100,
238U: 0.100,
205 Tl: 0.050样品气流量/(L·min−1) 约1.12 积分窗口/% 15 样品提取流速/(μL·min−1) 约50 检测模式 Counting 扫描类型 Escan 扫描次数 3×4 注:M/△M为质谱仪中分辨率的单位。 表 5 不同粒径的UTEVA对U、Th的分离效果
Tab. 5 Different particle size of UTEVA resin on U, Th separation efficiency
表 6 U、Th全流程空白值
Tab. 6 Procedure blank of U, Th
表 7 U、Th回收率与相对标准误差
Tab. 7 U, Th recovery and relative standard error
元素 日期 测定值/ng 平均值/ ng (mean±1σ, n=11) 相对标
准误差/%
(n=11)平均回
收率/%
(n=11)Th 2021年4月12日 0.544±0.012
(n=3, 1σ)0.554±0.016 3.0 92.3 2021年4月22日 0.566±0.019
(n=4, 1σ)2021年4月26日 0.549±0.011 (n=4, 1σ) U 2021年4月12日 94.7±2.00
(n=3, 1σ)95.5±1.6 1.7 95.5 2021年4月22日 96.5±1.42
(n=4, 1σ)2021年4月26日 95.3±1.33
(n=4, 1σ)表 8 海南滨珊瑚样品中U、Th含量
Tab. 8 U, Th contents in Hainan coral samples
样品编号 元素 取样量/
mg称取样品测定值/ng
(mean±1σ, n=6)精度
/%珊瑚中含量/(μg·g−1)
(mean±1σ, n=6)标准加入量/
ng加标后测定值/ng
(mean±1σ, n=6)加标回收率/%
(mean±1σ, n=6)Coral-1 Th 50 0.506±0.012 2.0 (10.12±0.24)×10−3 0.500 0.992±0.023 98.6±2.2 U 50 172.9±1.1 0.6 3.46±0.02 150.0 325.8±4.8 100.9±1.5 Coral-2 Th 50 0.241±0.005 2.1 (4.82±0.10)×10−3 0.500 0.739±0.021 99.7±1.0 U 50 133.4±2.2 1.7 2.67±0.05 150.0 277.4±1.9 97.9±1.0 Coral-3 Th 50 0.281±0.006 1.8 (5.62±0.12)×10−3 0.500 0.760±0.017 97.3±2.3 U 50 107.2±3.6 3.3 2.15±0.07 150.0 255.2±1.2 99.2±0.5 -
[1] Oppenheimer M, Glavovic B C, Hinkel J, et al. Chapter 4: sea level rise and implications for low-lying islands, coasts and communities[R]. Cambridge: Cambridge University Press, 2019: 321−425. [2] Bindoff N L, Coauthors. Chapter 5: changing ocean, marine ecosystems, and dependent communities[R]. Cambridge: Cambridge University Press, 2019: 447−587. [3] Collins M, Sutherland M, Bouwer L, et al. Chapter 6: extremes, abrupt changes and managing risks[R]. Cambridge: Cambridge University Press, 2019: 589−655. [4] 王朋岭, 黄磊, 巢清尘, 等. IPCC SROCC的主要结论和启示[J]. 气候变化研究进展, 2020, 16(2): 133−142.Wang Pengling, Huang Lei, Chao Qingchen, et al. The main content and insights of IPCC special report on the ocean and cryosphere in a changing climate (SROCC)[J]. Climate Change Research, 2020, 16(2): 133−142. [5] Inoue M, Suwa R, Suzuki A, et al. Effects of seawater pH on growth and skeletal U/Ca ratios of Acropora digitifera coral polyps[J]. Geophysical Research Letters, 2011, 38(12): L12809. [6] DeCarlo T M, Gaetani G A, Holcomb M, et al. Experimental determination of factors controlling U/Ca of aragonite precipitated from seawater: implications for interpreting coral skeleton[J]. Geochimica et Cosmochimica Acta, 2015, 162: 151−165. doi: 10.1016/j.gca.2015.04.016 [7] Raddatz J, Liebetrau V, Trotter J, et al. Environmental constraints on Holocene cold-water coral reef growth off Norway: insights from a multiproxy approach[J]. Paleoceanography, 2016, 31(10): 1350−1367. doi: 10.1002/2016PA002974 [8] Wei Gangjian, Sun Min, Li Xianhua, et al. Mg/Ca, Sr/Ca and U/Ca ratios of a porites coral from Sanya Bay, Hainan Island, South China Sea and their relationships to sea surface temperature[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2000, 162(1/2): 59−74. [9] Lawrence Edwards R, Chen J H, Wasserburg G J. 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500, 000 years[J]. Earth and Planetary Science Letters, 1987, 81(2/3): 175−192. [10] Kench P S, McLean R F, Owen S D, et al. Climate-forced sea-level lowstands in the Indian Ocean during the last two millennia[J]. Nature Geoscience, 2020, 13(1): 61−64. doi: 10.1038/s41561-019-0503-7 [11] Yu Kefu, Zhao Jianxin, Collerson K D, et al. Storm cycles in the last millennium recorded in Yongshu Reef, southern South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 210(1): 89−100. doi: 10.1016/j.palaeo.2004.04.002 [12] Yu Kefu, Zhao Jianxin, Shi Qi, et al. Reconstruction of storm/tsunami records over the last 4 000 years using transported coral blocks and lagoon sediments in the southern South China Sea[J]. Quaternary International, 2009, 195(1/2): 128−137. [13] Zhao Jianxin, Neil D T, Feng Yuexing, et al. High-precision U-series dating of very young cyclone-transported coral reef blocks from Heron and Wistari reefs, southern Great Barrier Reef, Australia[J]. Quaternary International, 2009, 195(1/2): 122−127. [14] Cobb K M, Charles C D, Cheng Hai, et al. El Niño/Southern Oscillation and tropical Pacific climate during the last millennium[J]. Nature, 2003, 424(6946): 271−276. doi: 10.1038/nature01779 [15] Cobb K M, Charles C D, Cheng Hai, et al. U/Th-dating living and young fossil corals from the central tropical Pacific[J]. Earth and Planetary Science Letters, 2003, 210(1/2): 91−103. [16] Abraram N J, Wright N M, Ellis B, et al. Coupling of Indo-Pacific climate variability over the last millennium[J]. Nature, 2020, 579(7799): 385−392. doi: 10.1038/s41586-020-2084-4 [17] Yu Kefu, Zhao Jianxin, Shi Qi, et al. U-series dating of dead Porites corals in the South China Sea: evidence for episodic coral mortality over the past two centuries[J]. Quaternary Geochronology, 2006, 1(2): 129−141. doi: 10.1016/j.quageo.2006.06.005 [18] Zheng Jian, Yamada M. Determination of U isotope ratios in sediments using ICP-QMS after sample cleanup with anion-exchange and extraction chromatography[J]. Talanta, 2006, 68(3): 932−939. doi: 10.1016/j.talanta.2005.06.065 [19] Shen Chuanchou, Wu Chungche, Cheng Hai, et al. High-precision and high-resolution carbonate 230Th dating by MC-ICP-MS with SEM protocols[J]. Geochimica et Cosmochimica Acta, 2012, 99: 71−86. doi: 10.1016/j.gca.2012.09.018 [20] Pons-Branchu E, Hillaire-Marcel C, Deschamps P, et al. Early diagenesis impact on precise U-series dating of deep-sea corals: Example of a 100–200-year old Lophelia pertusa sample from the northeast Atlantic[J]. Geochimica et Cosmochimica Acta, 2005, 69(20): 4865−4879. doi: 10.1016/j.gca.2005.06.011 [21] Philip Horwitz E, Dieta M L, Chiarizia R, et al. Separation and preconcentration of actinides by extraction chromatography using a supported liquid anion exchanger: application to the characterization of high-level nuclear waste solutions[J]. Analytica Chimica Acta, 1995, 310(1): 63−78. doi: 10.1016/0003-2670(95)00144-O [22] Yokoyama T, Makishima A, Nakamura E. Separation of thorium and uranium from silicate rock samples using two commercial extraction chromatographic resins[J]. Analytical Chemistry, 1999, 71(1): 135−141. doi: 10.1021/ac9805807 [23] Douville E, Sallé E, Frank N, et al. Rapid and accurate U–Th dating of ancient carbonates using inductively coupled plasma-quadrupole mass spectrometry[J]. Chemical Geology, 2010, 272(1/4): 1−11. [24] 廖泽波, 邵庆丰, 李春华, 等. MC-ICP-MS标样−样品交叉测试法测定石笋样品的230Th/U年龄[J]. 质谱学报, 2018, 39(3): 295−309. doi: 10.7538/zpxb.2017.0072Liao Zebo, Shao Qingfeng, Li Chunhua, et al. Measurement of U/Th isotopic compositions in stalagmites for 230Th/U geochronology using MC-ICP-MS by standard-sample bracketing method[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(3): 295−309. doi: 10.7538/zpxb.2017.0072 [25] Shao Qingfeng, Pons-Branchu E, Zhu Qiuping, et al. High precision U/Th dating of the rock paintings at Mt. Huashan, Guangxi, southern China[J]. Quaternary Research, 2017, 88(1): 1−13. doi: 10.1017/qua.2017.24 [26] 瞿建国, 汤震宇. 一种高度可调用于富集分离痕量元素的工作台: 201910822494.4[P]. 2019−11−08.Qu Jianguo, Tang Zhenyu. A adjustable height workable applied on separation and purification trace element: 201910822494.4[P]. 2019−11−08. [27] 袁影, 王思广. 电感耦合等离子体质谱法测定单晶铜中痕量放射性核素钍和铀的含量[J]. 核技术, 2018, 41(9): 21−26.Yuan Ying, Wang Siguang. Determination of thorium and uranium in copper using inductively coupled plasma mass spectrometry[J]. Nuclear Techniques, 2018, 41(9): 21−26. [28] 唐爱玲. 生物碳酸盐中硫同位素组成分析及其应用[D]. 上海: 华东师范大学, 2013.Tang Ailing. Sulfur isotopic composition analysis of biogenic carbonates and its applications[D]. Shanghai: East China Normal University, 2013. [29] Shen Chuanchou, Li Kueishu, Sieh K, et al. Variation of initial 230Th/232Th and limits of high precision U–Th dating of shallow-water corals[J]. Geochimica et Cosmochimica Acta, 2008, 72(17): 4201−4223. doi: 10.1016/j.gca.2008.06.011 [30] Shen Chuanchou, Lawrence Edwards R, Cheng Hai, et al. Uranium and thorium isotopic and concentration measurements by magnetic sector inductively coupled plasma mass spectrometry[J]. Chemical Geology, 2002, 185(3/4): 165−178. [31] Veerasamy N, Takamasa A, Murugan R, et al. Chemical separation of uranium and precise measurement of 234U/238U and 235U/238U ratios in soil samples using multi collector inductively coupled plasma mass spectrometry[J]. Molecules, 2020, 25(9): 2138. doi: 10.3390/molecules25092138 [32] Mitsuguchi T, Uchida T, Matsumoto E, et al. Variations in Mg/Ca, Na/Ca, and Sr/Ca ratios of coral skeletons with chemical treatments: implications for carbonate geochemistry[J]. Geochimica et Cosmochimica Acta, 2001, 65(17): 2865−2874. doi: 10.1016/S0016-7037(01)00626-3 [33] Reynaud S, Ferrier-Pagès C, Meibom A, et al. Light and temperature effects on Sr/Ca and Mg/Ca ratios in the scleractinian coral Acropora sp.[J]. Geochimica et Cosmochimica Acta, 2007, 71(2): 354−362. doi: 10.1016/j.gca.2006.09.009 [34] Mitsuguchi T, Dang P X, Kitagawa H, et al. Coral Sr/Ca and Mg/Ca records in Con Dao Island off the Mekong Delta: assessment of their potential for monitoring ENSO and East Asian monsoon[J]. Global and Planetary Change, 2008, 63(4): 341−352. doi: 10.1016/j.gloplacha.2008.08.002 [35] Raddatz J, Liebetrau V, Rüggeberg A, et al. Stable Sr-isotope, Sr/Ca, Mg/Ca, Li/Ca and Mg/Li ratios in the scleractinian cold-water coral Lophelia pertusa[J]. Chemical Geology, 2013, 352: 143−152. doi: 10.1016/j.chemgeo.2013.06.013 [36] Shao Qingfeng, Ge Junyi, Ji Qiang, et al. Geochemical provenancing and direct dating of the Harbin archaic human cranium[J]. The Innovation, 2021, 2(3): 100131. doi: 10.1016/j.xinn.2021.100131 [37] Clark T R, Roff G, Zhao Jianxin, et al. Testing the precision and accuracy of the U-Th chronometer for dating coral mortality events in the last 100 years[J]. Quaternary Geochronology, 2014, 23: 35−45. doi: 10.1016/j.quageo.2014.05.002 -