留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大风影响下的莱州湾西岸单站底层泥沙输运特征分析

李海 万凯 宋新 宋德海 王楠 鲍献文

李海,万凯,宋新,等. 大风影响下的莱州湾西岸单站底层泥沙输运特征分析[J]. 海洋学报,2022,44(6):1–12 doi: 10.12284/hyxb2022041
引用本文: 李海,万凯,宋新,等. 大风影响下的莱州湾西岸单站底层泥沙输运特征分析[J]. 海洋学报,2022,44(6):1–12 doi: 10.12284/hyxb2022041
Li Hai,Wan Kai,Song Xin, et al. Bottom sediment transport in western Laizhou Bay during strong wind events based on a tripod measurement[J]. Haiyang Xuebao,2022, 44(6):1–12 doi: 10.12284/hyxb2022041
Citation: Li Hai,Wan Kai,Song Xin, et al. Bottom sediment transport in western Laizhou Bay during strong wind events based on a tripod measurement[J]. Haiyang Xuebao,2022, 44(6):1–12 doi: 10.12284/hyxb2022041

大风影响下的莱州湾西岸单站底层泥沙输运特征分析

doi: 10.12284/hyxb2022041
基金项目: 山东省自然科学基金(ZR2019MD010);NSFC-山东省联合基金(U1706215);国家重点研发专项(2018YFC140707602);国家海洋局北海分局科技项目(2016b16)。
详细信息
    作者简介:

    李海(1999−),男,广西省桂林市人,主要从事海洋沉积动力学研究。E-mail: lihai@stu.ouc.edu.cn

    通讯作者:

    宋德海(1983−),男,山东省青岛市人,副教授,主要从事近海环流与物质输运研究。E-mail:songdh@ouc.edu.cn

  • 中图分类号: P332.5

Bottom sediment transport in western Laizhou Bay during strong wind events based on a tripod measurement

  • 摘要: 基于2018年10月21日至11月6日莱州湾西岸连续站观测数据,本文利用集合经验模态分解(EEMD)、希尔伯特−黄变换(HHT)和小波分析法对底层单宽输沙率的小尺度特征做分析,并针对观测期间出现的大风天气对泥沙输运的影响进行了探究。结果表明,单宽输沙率在观测时间段内具有高频、潮周期、低频以及长周期尺度变化特征,周期尺度从小到大。其中高频和潮周期分量方差贡献率及所含能量最高,对输沙率的影响最强。边际谱显示东西方向输沙率的显著周期为13.3 h,南北方向大于11 h的周期较为显著。观测期间底层净泥沙通量分别为东向305.77 kg/m,南向597.25 kg/m,余流分量贡献最大,低频和高频分量贡献量最小。上强迫风场主要在风速衰减期通过湍流和波浪影响输沙速率的时频分布,使其低频变化显著增强的同时,产生1 h周期左右的高频波动。交叉小波分析显示,风速和单宽输沙率在低频波段上相干性较强,且单宽输沙率会滞后风速1/4至1/2个周期。另外,风浪会增强泥沙输运的涨落潮不对称性,进而增加潮周期分量上的泥沙净输运。
  • 图  1  研究区域水深、连续站和风场数据站位

    Fig.  1  Bathymetry map of the study area and the location of the measurement site and wind data site

    图  2  ADCP观测的流速剖面U分量(a)和V分量(b),ADV观测的近底层流速U分量(c)和V分量(d)及临近层位的ADCP观测数据对比

    Fig.  2  The ADCP measured U-component (a) and V-component (b) of the velocity profile, and the ADV measured U-component (c) and V- component (d) of the near-bottom velocity and corresponding ADCP measurement

    图  3  风矢量(a),亚潮频率的流速剖面U分量(b)和V分量(c),SSC(d)

    Fig.  3  Wind vector (a), U-component (b) and V-component (c) of the sub-tidal velocity profile, and SSC (d)

    图  4  单宽输沙率(a)和累积输沙率(b)随时间的变化

    Fig.  4  Temporal variation of (a) the sediment transport rate and (b) cumulative sediment transport rate within unit-width

    图  5  单宽输沙率EEMD分解重构结果

    Fig.  5  The reconstructed IMFs of unit-width sediment transport rate

    图  6  东西方向(a)、南北方向(b)各分量显著性检验

    Fig.  6  Significance test of each component in (a) east-west direction and (b) north-south direction

    图  7  风速(a),东西方向单宽输沙率的Hilbert谱(b),南北方向单宽输沙率的Hilbert谱(c),有效波高(d)和湍动能(e)

    红色方框为风速增长期,绿色方框为风速衰减期

    Fig.  7  Temporal variation of (a) the wind speed, (b) Hilbert spectrum of east-west unit-width sediment transport rate, (c) Hilbert spectrum of north-south unit-width sediment transport rate, (d) significant wave height, and (e) turbulent kinetic energy

    Red boxes indicate wind increase periods and green for wind decrease periods

    图  8  东西方向(a)和南北方向(b)单宽输沙率的边际谱

    Fig.  8  The marginal spectrum of the (a) east-west and (b) north-south sediment transport within unit-width

    图  9  东西方向单宽输沙率与风速的交叉小波功率谱(a)和小波相干谱(b);南北方向单宽输沙率与风速的交叉小波功率谱(c)和小波相干谱(d)

    Fig.  9  The cross-wavelet power spectrum (a) and wavelet coherence spectrum (b) between east-west unit-width sediment transport rate and wind speed; and the cross-wavelet power spectrum (c) and wavelet coherence spectrum (d) between north-south unit-width sediment transport rate and wind speed

    图  10  各分量及余流分量的净输沙量

    Fig.  10  Net sediment transport of each component and Res

    图  11  潮流分量涨潮、落潮和全潮净输沙量

    Fig.  11  The net sediment transport of tide current component during each flood tide, ebb tide and full tide

    表  1  测量仪器设置

    Tab.  1  Settings of observation instruments

    测量仪器距海底距离/
    cm
    采样周期/
    min
    采样频率/
    Hz
    测量参数
    TD-WAVE102516波高、波周期、水深
    ADCP 向上180208流速、流向、温度、压强
    ADCP 向下92208流速、流向、温度、压强
    ADV343016流速、流向
    OBS1102208浊度
    OBS228208浊度
    下载: 导出CSV

    表  2  单宽输沙率EEMD分解各IMF分量平均周期和方差贡献率

    Tab.  2  The period and variance contribution rate of each IMF of the EEMD decomposition on unit-width sediment transport rate

    IMF分量东西方向
    平均周期/h
    东西方向
    方差贡献率/%
    南北方向
    平均周期/h
    南北方向
    方差贡献率/%
    IMF11.041.520.987.19
    IMF22.703.542.514.80
    IMF36.9956.305.9612.34
    IMF412.4026.2712.6022.69
    IMF524.806.3323.2914.52
    IMF645.220.6738.433.99
    IMF7109.811.12109.811.32
    IMF8192.170.46334.737.36
    IMF9384.330.08380.612.66
    Res/3.70/23.11
    下载: 导出CSV
  • [1] 胡日军. 舟山群岛海域泥沙运移及动力机制分析[D]. 青岛: 中国海洋大学, 2009.

    Hu Rijun. Sediment transport and dynamic mechanism in the Zhoushan Archipelago sea area[D]. Qingdao: Ocean University of China, 2019.
    [2] 陈斌, 高飞, 刘健. 夏季浙江沿岸陆架区泥沙输运机制[J]. 海洋学报, 2017, 39(3): 96−105.

    Chen Bin, Gao Fei, Liu Jian. Sediment transport mechanism in the Zhejiang inner continental shelf in summer[J]. Haiyang Xuebao, 2017, 39(3): 96−105.
    [3] 庞重光, 于炜. 渤海表层悬浮泥沙的空间模态及其时间变化[J]. 水科学进展, 2013, 24(5): 722−727.

    Pang Chongguang, Yu Wei. Spatial modes of suspended sediment concentration in surface water in Bohai Sea and their temporal variations[J]. Advances in Water Science, 2013, 24(5): 722−727.
    [4] 王海龙, 韩树宗, 郭佩芳, 等. 潮流对黄河入海泥沙在渤海中输运的贡献[J]. 泥沙研究, 2011(1): 51−59.

    Wang Hailong, Han Shuzong, Guo Peifang, et al. Transportation of sediment from Yellow River in Bohai Sea due to tidal currents[J]. Journal of Sediment Research, 2011(1): 51−59.
    [5] 刘波, 胡日军, 袁晓东, 等. 龙口近岸海域潮流作用下悬浮泥沙时空分布特征及输运机制[J]. 海洋地质与第四纪地质, 2020, 40(4): 55−66.

    Liu Bo, Hu Rijun, Yuan Xiaodong, et al. Spatiotemporal distribution pattern and transport mechanism of suspended sediments in Longkou offshore under the action of tidal current[J]. Marine Geology & Quaternary Geology, 2020, 40(4): 55−66.
    [6] Lu J, Qiao F L, Wang X H, et al. A numerical study of transport dynamics and seasonal variability of the Yellow River sediment in the Bohai and Yellow seas[J]. Estuarine, Coastal and Shelf Science, 2011, 95(1): 39−51. doi: 10.1016/j.ecss.2011.08.001
    [7] Zhou Zhou, Bian Changwei, Wang Chenghao, et al. Quantitative assessment on multiple timescale features and dynamics of sea surface suspended sediment concentration using remote sensing data[J]. Journal of Geophysical Research: Oceans, 2017, 122(11): 8739−8752. doi: 10.1002/2017JC013082
    [8] Jiang Man, Pang Chongguang, Liu Zhiliang, et al. Sediment resuspension in winter in an exceptional low suspended sediment concentration area off Qinhuangdao in the Bohai Sea[J]. Estuarine Coastal and Shelf Science, 2020, 245: 106859. doi: 10.1016/j.ecss.2020.106859
    [9] Bi Naishuang, Yang Zuosheng, Wang Houjie, et al. Seasonal variation of suspended-sediment transport through the southern Bohai Strait[J]. Estuarine, Coastal and Shelf Science, 2011, 93(3): 239−247. doi: 10.1016/j.ecss.2011.03.007
    [10] Wang Chenghao, Liu Zhiqiang, Harris C K, et al. The impact of winter storms on sediment transport through a narrow strait, Bohai, China[J]. Journal of Geophysical Research: Oceans, 2020, 125(6): e2020JC016069.
    [11] 李昶, 陈丽贵, 何造胜. 莱州湾小清河入海口水质变化及成因分析[J]. 环境与发展, 2020, 32(11): 118−119,121.

    Li Chang, Chen Ligui, He Zaosheng. Analysis of water quality change and causes of Xiaoqing River estuary in Laizhou Bay[J]. Environment and Development, 2020, 32(11): 118−119,121.
    [12] 王丽雪, 李雪艳, 王庆, 等. 莱州湾东部海岸剖面冲淤演变研究[J]. 海洋湖沼通报, 2020(6): 44−52.

    Wang Lixue, Li Xueyan, Wang Qing, et al. Study on profile evolution in the Eastern Coast of Laizhou Bay[J]. Transactions of Oceanology and Limnology, 2020(6): 44−52.
    [13] Huang N E, Shen Zheng, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903−995. doi: 10.1098/rspa.1998.0193
    [14] Wu Zhaohua, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1−41. doi: 10.1142/S1793536909000047
    [15] 王俊杰, 拾兵, 卢仲翰. 黄河入海径流量周期变化与东亚夏季风的关系研究[J]. 海洋通报, 2020, 39(3): 316−324.

    Wang Junjie, Shi Bing, Lu Zhonghan. Study on the relationship between the periodic change of Yellow River runoff to Bohai Sea and East Asian Summer Monsoon[J]. Marine Science Bulletin, 2020, 39(3): 316−324.
    [16] 陈则煌, 张云峰, 谢菲, 等. EEMD在雷暴日趋势特征分析中的应用[J]. 热带地理, 2015, 35(4): 601−606.

    Chen Zehuang, Zhang Yunfeng, Xie Fei, et al. Applications of EEMD in the trends analysis of the thunderstorm days[J]. Tropical Geography, 2015, 35(4): 601−606.
    [17] Torrence C, Comfpo G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1): 61−78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
    [18] 朱建荣, 薛元忠. 长江河口横沙小港泥沙浓度的观测及研究[J]. 华东师范大学学报(自然科学版), 2001(3): 68−73.

    Zhu Jianrong, Xue Yuanzhong. Observation and study of suspended sediment concentration at Hengsha channel in the Changjiang estuary[J]. Journal of East China Normal University (Natural Science), 2001(3): 68−73.
    [19] 庞重光, 李坤, 于炜. 渤海表层悬沙的时空分布特征及其动力成因[J]. 海洋科学进展, 2014, 32(4): 450−458.

    Pang Chongguang, Li Kun, Yu Wei. Distribution characteristics, seasonal variability and dynamical mechanism of suspended sediment in the surface layer of the Bohai Sea[J]. Advances in Marine Science, 2014, 32(4): 450−458.
    [20] 崔廷伟, 张杰, 马毅, 等. 渤海悬浮物分布的遥感研究[J]. 海洋学报, 2009, 31(5): 10−18.

    Cui Tingwei, Zhang Jie, Ma Yi, et al. The study on the distribution of suspended particulate matter in the Bohai Sea by remote sensing[J]. Haiyang Xuebao, 2009, 31(5): 10−18.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  39
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-19
  • 修回日期:  2021-10-11

目录

    /

    返回文章
    返回