留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

鼠尾藻(Sargassum thunbergii)固碳能力对流速的响应

赵志方 秦松 刘正一 唐君玮 肖圣志 钟志海

赵志方,秦松,刘正一,等. 鼠尾藻(Sargassum thunbergii)固碳能力对流速的响应[J]. 海洋学报,2022,44(2):113–122 doi: 10.12284/hyxb2022030
引用本文: 赵志方,秦松,刘正一,等. 鼠尾藻(Sargassum thunbergii)固碳能力对流速的响应[J]. 海洋学报,2022,44(2):113–122 doi: 10.12284/hyxb2022030
Zhao Zhifang,Qin Song,Liu Zhengyi, et al. Response of carbon sequestration capacity of Sargassum thunbergii to water flow speed[J]. Haiyang Xuebao,2022, 44(2):113–122 doi: 10.12284/hyxb2022030
Citation: Zhao Zhifang,Qin Song,Liu Zhengyi, et al. Response of carbon sequestration capacity of Sargassum thunbergii to water flow speed[J]. Haiyang Xuebao,2022, 44(2):113–122 doi: 10.12284/hyxb2022030

鼠尾藻(Sargassum thunbergii)固碳能力对流速的响应

doi: 10.12284/hyxb2022030
基金项目: 国家自然科学青年基金(42006110);烟台市科技计划(2020MSGY058);山东省自然科学青年基金(ZR2019QD017);山东省重点研发计划(国际科技合作)(2019GHZ026);2020年度山东省重点扶持区域引进急需紧缺人才项目。
详细信息
    作者简介:

    赵志方(1996-),男,山东省烟台市人,主要从事藻类的生理生态以及大型海藻碳汇机制的研究。E-mail: 18846767790@163.com

    通讯作者:

    钟志海,工程师,主要从事藻类的生理生态学研究。E-mail: zhzhong@yic.ac.cn

  • 中图分类号: P917.3

Response of carbon sequestration capacity of Sargassum thunbergii to water flow speed

  • 摘要: 流动的海水可以为海藻的生长提供所需的营养物质,对其生长和繁殖起到了非常重要的作用,而当前的生理生态学模拟实验,大多忽略了这一重要的环境因子。大型海藻虽然被认为是第4类“蓝碳”,但关于其固碳能力的研究较少。本研究设计了一种可以调节流速的大型海藻固碳能力测量系统,既可以测量大型海藻的净光合速率、呼吸速率和对无机氮、无机磷的吸收速率,也可以测量可溶性有机碳的释放速率。结果显示,与静止(0 m/s)相比,中流速(0.033 m/s)和高流速(0.094 m/s)均能提高鼠尾藻的净光合速率、净初级生产力、可溶性有机碳释放速率以及对无机氮、无机磷的吸收速率,且最大值均出现在高流速下。此外,鼠尾藻的可溶性有机碳释放速率随净初级生产力的提高而提高。本测量系统可为大型海藻固碳能力的研究提供切实可行的参考。
  • 图  1  大型海藻固碳能力测量系统示意图

    Fig.  1  Schematic diagram of carbon sequestration capacity measurement system of macroalgae

    图  2  开放式大型海藻固碳能力测量系统示意图

    Fig.  2  Schematic diagram of open carbon sequestration capacity measurement system of macroalgae

    图  3  不同流速下测量系统内pH随时间的变化

    Fig.  3  The change of pH in the measurement system with time under different flow rates

    图  4  不同流速下鼠尾藻的净光合速率和呼吸速率

    不同字母代表差异显著(p<0.05)

    Fig.  4  The net photosynthetic rate and respiration rate of Sargassum thunbergii under different flow rates

    Different letters indicate a significant difference (p<0.05)

    图  5  不同流速下鼠尾藻的净初级生产力

    不同字母代表差异显著(p<0.05)

    Fig.  5  The net primary productivity of Sargassum thunbergii under different flow rates

    Different letters indicate a significant difference (p<0.05)

    图  6  不同流速下鼠尾藻的可溶性有机碳(DOC)释放速率

    不同的小写字母表示不同流速下,DOC释放速率的显著性差异(p<0.05);不同的大写字母表示相同流速下,白天和黑夜DOC释放速率的显著性差异(p<0.05)

    Fig.  6  The dissolved organic carbon (DOC) release rate of Sargassum thunbergii under different flow rates

    Different lowercase letters indicate a significant difference in DOC release rate at different flow rates (p<0.05); different capital letters indicate a significant difference in DOC release rate between day and night at the same flow rate (p<0.05)

    图  7  不同流速下鼠尾藻对可溶性有机氮(DIN)和可溶性有机磷(DIP)的吸收速率

    不同字母代表差异显著(p<0.05)

    Fig.  7  The absorption rates of dissolved inorganic nitrogen (DIN) and dis-solved inorganic (DIP) phosphorus by Sargassum thunbergii under different flow rates

    Different letters indicate a significant difference (p<0.05)

    表  1  鼠尾藻在中流速培养24 h的各项有机碳量

    Tab.  1  The organic carbon content of Sargassum thunbergii cultured at a medium flow rate for 24 h

    装置编号C/mgPOC1/mgPOC2/mgDOC/mg(POC1+POC2+DOC)/mgC/mgC/C
    A 48.78 12.86 22.20 12.70 47.76 1.01 2.08%
    B 47.16 10.92 23.55 11.80 46.27 0.89 1.88%
    C 63.91 16.14 29.58 16.80 62.52 1.39 2.18%
    平均值±标准差 53.28±9.24 13.31±2.64 25.11±3.93 13.77±2.67 52.19±8.98 1.10±0.26 (2.05±0.15)%
      注:装置A、B和C是实验的3个重复组;C:24 h的净固碳量;POC1:24 h藻体增加的生物量和枯枝败叶中的有机碳量;POC2:24 h培养水体中的颗粒有机碳量;DOC:24 h藻体释放的溶解有机碳量;C=C−(POC1+POC2+DOC)。
    下载: 导出CSV
  • [1] 范振林. 开发蓝色碳汇助力实现碳中和[J]. 中国国土资源经济, 2021, 34(4): 12−18.

    Fan Zhenlin. Developing blue carbon sink to implement carbon neutralization[J]. Natural Resource Economics of China, 2021, 34(4): 12−18.
    [2] Devries T. The oceanic anthropogenic CO2 sink: storage, air-sea fluxes, and transports over the industrial era[J]. Global Biogeochemical Cycles, 2014, 28(7): 631−647. doi: 10.1002/2013GB004739
    [3] DeVries T, Holzer M, Primeau F. Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning[J]. Nature, 2017, 542(7640): 215−218. doi: 10.1038/nature21068
    [4] Behrenfeld M J, Marañón E, Siegel D A, et al. Photoacclimation and nutrient-based model of light-saturated photosynthesis for quantifying oceanic primary production[J]. Marine Ecology Progress Series, 2002, 228: 103−117. doi: 10.3354/meps228103
    [5] Homén K. The global carbon cycle[J]. International Geophysics, 2000, 72: 282−321.
    [6] Duarte C M, Middelburg J J, Caraco N. Major role of marine vegetation on the oceanic carbon cycle[J]. Biogeosciences, 2005, 2(1): 1−8. doi: 10.5194/bg-2-1-2005
    [7] Alpert S B, Spencer D F, Hidy G. Biospheric options for mitigating atmospheric carbon dioxide levels[J]. Energy Conversion and Management, 1992, 33(5/8): 729−736.
    [8] Duarte C M, Cebrián J. The fate of marine autotrophic production[J]. Limnology and Oceanography, 1996, 41(8): 1758−1766. doi: 10.4319/lo.1996.41.8.1758
    [9] Krause-Jensen D, Duarte C M. Substantial role of macroalgae in marine carbon sequestration[J]. Nature Geoscience, 2016, 9(10): 737−742. doi: 10.1038/ngeo2790
    [10] Han T, Han Y S, Kain J M, et al. Thallus differentiation of photosynthesis, growth, reproduction, and UV-B sensitivity in the green alga Ulva pertusa (Chlorophyceae)[J]. Journal of Phycology, 2003, 39(4): 712−721. doi: 10.1046/j.1529-8817.2003.02155.x
    [11] Wu Hailong, Feng Jingchi, Li Xinshu, et al. Effects of increased CO2 and temperature on the physiological characteristics of the golden tide blooming macroalgae Sargassum horneri in the Yellow Sea, China[J]. Marine Pollution Bulletin, 2019, 146: 639−644. doi: 10.1016/j.marpolbul.2019.07.025
    [12] Gao K, Umezaki I. Comparative photosynthetic capacities of the leaves of upper and lower parts of sargassum plants[J]. Botanica Marina, 1988, 31(3): 231−236.
    [13] Horner S M J, Smith D F. Distinguishing modes of dissolved organic carbon production in marine macrophytes by tracer kinetic analysis[J]. Marine Biology, 1984, 81(3): 231−236. doi: 10.1007/BF00393217
    [14] Schumacher G J, Whitford L A. Respiration and P32 uptake in various species of freshwater algae as affected by a current[J]. Journal of Phycology, 1965, 1(2): 78−80. doi: 10.1111/j.1529-8817.1965.tb04561.x
    [15] Carpenter R C. Relationships between primary production and irradiance in coral reef algal communities[J]. Limnology and Oceanography, 1985, 30(4): 784−793. doi: 10.4319/lo.1985.30.4.0784
    [16] Griffith P C, Cubit J D, Adey W H, et al. Computer-automated flow respirometry: metabolism measurements on a Caribbean reef flat and in a microcosm[J]. Limnology and Oceanography, 1987, 32(2): 442−451. doi: 10.4319/lo.1987.32.2.0442
    [17] Cornwall C E, Hepburn C D, Pilditch C A, et al. Concentration boundary layers around complex assemblages of macroalgae: implications for the effects of ocean acidification on understory coralline algae[J]. Limnology and Oceanography, 2013, 58(1): 121−130. doi: 10.4319/lo.2013.58.1.0121
    [18] Nishihara G N, Terada R. Spatial variations in nutrient supply to the red algae Eucheuma serra (J. Agardh) J. Agardh[J]. Phycological Research, 2010, 58(1): 29−34. doi: 10.1111/j.1440-1835.2009.00555.x
    [19] Wingler A, Lea P J, Quick W P, Leegood R C. Photorespiration: metabolic pathways and their role in stress protection[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2000, 355(1402): 1517−1529. doi: 10.1098/rstb.2000.0712
    [20] Weigel B L, Pfister C A. The dynamics and stoichiometry of dissolved organic carbon release by kelp[J]. Ecology, 2021, 102(2): e03221.
    [21] 高坤山. 藻类光合固碳的研究技术与解析方法[J]. 海洋科学, 1999(6): 37−41. doi: 10.3969/j.issn.1000-3096.1999.06.017

    Gao Kunshan. Research techniques and methods in characterizing photosynthetic carbon fixation by algae[J]. Marine Sciences, 1999(6): 37−41. doi: 10.3969/j.issn.1000-3096.1999.06.017
    [22] Bao Menglin, Hu Lili, Fu Qianqian, et al. Different photosynthetic responses of Pyropia yezoensis to ultraviolet radiation under changing temperature and photosynthetic active radiation regimes[J]. Photochemistry and Photobiology, 2019, 95(5): 1213−1218. doi: 10.1111/php.13108
    [23] Liu Fuli, Sun Xiutao, Wang Wenjun, et al. Development of a female-specific RAPD marker for Sargassum thunbergii gender identification using bulked segregant analysis[J]. Aquatic Botany, 2012, 102: 79−81. doi: 10.1016/j.aquabot.2012.05.001
    [24] 刘玮, 辛美丽, 吕芳, 等. 关于鼠尾藻群体数量分布的三种统计模型比较[J]. 生态学报, 2018, 38(6): 2031−2040.

    Liu Wei, Xin Meili, Lü Fang, et al. Comparison of three statistical models for the quantitative distribution of Sargassum thunbergii populations[J]. Acta Ecologica Sinica, 2018, 38(6): 2031−2040.
    [25] Zhang Quansheng, Li Wei, Liu Su, et al. Size-dependence of reproductive allocation of Sargassum thunbergii (Sargassaceae, Phaeophyta) in Bohai Bay, China[J]. Aquatic Botany, 2009, 91(3): 194−198. doi: 10.1016/j.aquabot.2009.06.003
    [26] 于永强, 张全胜, 唐永政, 等. 马尾藻种群生活史性状时空变化的研究进展[J]. 水产科学, 2012, 31(7): 437−443. doi: 10.3969/j.issn.1003-1111.2012.07.011

    Yu Yongqiang, Zhang Quansheng, Tang Yongzheng, et al. The advance in research on spatio-temporal variation in life cycle in sea weed Sargassum[J]. Fisheries Science, 2012, 31(7): 437−443. doi: 10.3969/j.issn.1003-1111.2012.07.011
    [27] Wada S, Aoki M N, Tsuchiya Y, et al. Quantitative and qualitative analyses of dissolved organic matter released from Ecklonia cava Kjellman, in Oura Bay, Shimoda, Izu Peninsula, Japan[J]. Journal of Experimental Marine Biology and Ecology, 2007, 349(2): 344−358. doi: 10.1016/j.jembe.2007.05.024
    [28] Gao Kunshan, Xu Juntian, Zheng Yangqiao, et al. Measurement of benthic photosynthesis and calcification in flowing-through seawater with stable carbonate chemistry[J]. Limnology and Oceanography: Methods, 2012, 10(7): 555−559. doi: 10.4319/lom.2012.10.555
    [29] Cory R M, Harrold K H, Neilson B T, et al. Controls on dissolved organic matter (DOM) degradation in a headwater stream: the influence of photochemical and hydrological conditions in determining light-limitation or substrate-limitation of photo-degradation[J]. Biogeosciences, 2015, 12(22): 6669−6685. doi: 10.5194/bg-12-6669-2015
    [30] Mopper K, Zhou Xianliang, Kieber R J, et al. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle[J]. Nature, 1991, 353(6339): 60−62. doi: 10.1038/353060a0
    [31] Carpenter R C, Hackney J M, Adey W H. Measurements of primary productivity and nitrogenase activity of coral reef algae in a chamber incorporating oscillatory flow[J]. Limnology and Oceanography, 1991, 36(1): 40−49. doi: 10.4319/lo.1991.36.1.0040
    [32] Koehl M A R, Alberte R S. Flow, flapping, and photosynthesis of Nereocystis leutkeana: a functional comparison of undulate and flat blade morphologies[J]. Marine Biology, 1988, 99(3): 435−444. doi: 10.1007/BF02112137
    [33] Ghisalberti M, Nepf H M. Mixing layers and coherent structures in vegetated aquatic flows[J]. Journal of Geophysical Research: Oceans, 2002, 107(C2): 3011. doi: 10.1029/2001JC000871
    [34] Wheeler W N. Effect of boundary layer transport on the fixation of carbon by the giant kelp Macrocystis pyrifera[J]. Marine Biology, 1980, 56(2): 103−110. doi: 10.1007/BF00397128
    [35] Koch E W. Hydrodynamics, diffusion-boundary layers and photosynthesis of the seagrasses Thalassia testudinum and Cymodocea nodosa[J]. Marine Biology, 1994, 118(4): 767−776. doi: 10.1007/BF00347527
    [36] Gao K S. Effects of seawater current speed on the photosynthetic oxygen evolution of Sargassum thunbergii (Phaeophyta)[J]. Japanese Journal of Phycology, 1991, 39: 291−293.
    [37] Wyatt K H, Rober A R, Schmidt N, et al. Effects of desiccation and rewetting on the release and decomposition of dissolved organic carbon from benthic macroalgae[J]. Freshwater Biology, 2014, 59(2): 407−416. doi: 10.1111/fwb.12273
    [38] Fogg G E, Nalewajko C, Watt W D. Extracellular products of phytoplankton photosynthesis[J]. Proceedings of the Royal Society of London. Series B, Biological Sciences, 1965, 162(989): 517−534.
    [39] Morán X A G, Estrada M. Phytoplanktonic DOC and POC production in the Bransfield and Gerlache Straits as derived from kinetic experiments of 14C incorporation[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2002, 49(4/5): 769−786.
    [40] Aluwihare L I, Repeta D J, Chen R F. A major biopolymeric component to dissolved organic carbon in surface sea water[J]. Nature, 1997, 387(6629): 166−169. doi: 10.1038/387166a0
    [41] 殷建平, 王友绍, 徐继荣, 等. 海洋碳循环研究进展[J]. 生态学报, 2006, 26(2): 566−575. doi: 10.3321/j.issn:1000-0933.2006.02.033

    Yin Jianping, Wang Youshao, Xu Jirong, et al. Adavances of studies on marine carbon cycle[J]. Acta Ecologica Sinica, 2006, 26(2): 566−575. doi: 10.3321/j.issn:1000-0933.2006.02.033
    [42] Carlson C A, Ducklow H W. Growth of bacterioplankton and consumption of dissolved organic carbon in the Sargasso Sea[J]. Aquatic Microbial Ecology, 1996, 10(1): 69−85.
    [43] Hill R, Bellgrove A, Macreadie P I, et al. Can macroalgae contribute to blue carbon? An Australian perspective[J]. Limnology and Oceanography, 2015, 60(5): 1689−1706. doi: 10.1002/lno.10128
    [44] Marañón E, Cermeño P, Fernández E, et al. Significance and mechanisms of photosynthetic production of dissolved organic carbon in a coastal eutrophic ecosystem[J]. Limnology and Oceanography, 2004, 49(5): 1652−1666. doi: 10.4319/lo.2004.49.5.1652
    [45] Bjørrisen P K. Phytoplankton exudation of organic matter: why do healthy cells do it?[J]. Limnology and Oceanography, 1988, 33(1): 151−154. doi: 10.4319/lo.1988.33.1.0151
    [46] Berman T. Release of dissolved organic matter by photosynthesizing algae in Lake Kinneret, Israel[J]. Freshwater Biology, 1976, 6(1): 13−18. doi: 10.1111/j.1365-2427.1976.tb01585.x
    [47] Abdullah M I, Fredriksen S. Production, respiration and exudation of dissolved organic matter by the kelp Laminaria hyperborea along the west coast of Norway[J]. Journal of the Marine Biological Association of the United Kingdom, 2004, 84(5): 887−894. doi: 10.1017/S002531540401015Xh
    [48] Reed D C, Carlson C A, Halewood E R, et al. Patterns and controls of reef-scale production of dissolved organic carbon by giant kelp Macrocystis pyrifera[J]. Limnology and Oceanography, 2015, 60(6): 1996−2008. doi: 10.1002/lno.10154
    [49] 张林海, 曾从盛, 胡伟芳. 氮输入对植物光合固碳的影响研究进展[J]. 生态学报, 2017, 37(1): 147−155.

    Zhang Linhai, Zeng Congsheng, Hu Weifang. Reviews on effects of nitrogen addition on plant photosynthetic carbon fixation[J]. Acta Ecologica Sinica, 2017, 37(1): 147−155.
    [50] Juneja A, Ceballos R M, Murthy G S. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review[J]. Energies, 2013, 6(9): 4607−4638. doi: 10.3390/en6094607
    [51] Cornelisen C D, Thomas F I M. Water flow enhances ammonium and nitrate uptake in a seagrass community[J]. Marine Ecology Progress Series, 2006, 312: 1−13. doi: 10.3354/meps312001
    [52] Gerard V A. In situ water motion and nutrient uptake by the giant kelp Macrocystis pyrifera[J]. Marine Biology, 1982, 69(1): 51−54. doi: 10.1007/BF00396960
    [53] Touchette B W, Burkholder J M. Review of nitrogen and phosphorus metabolism in seagrasses[J]. Journal of Experimental Marine Biology and Ecology, 2000, 250(1/2): 133−167.
    [54] Hurd C L, Harrison P J, Druehl L D. Effect of seawater velocity on inorganic nitrogen uptake by morphologically distinct forms of Macrocystis integrifolia from wave-sheltered and exposed sites[J]. Marine Biology, 1996, 126(2): 205−214. doi: 10.1007/BF00347445
    [55] Thomas F I M, Cornelisen C D. Ammonium uptake by seagrass communities: effects of oscillatory versus unidirectional flow[J]. Marine Ecology Progress Series, 2003, 247: 51−57. doi: 10.3354/meps247051
    [56] Atkinson M J, Smith S V. C∶N∶P ratios of benthic marine plants[J]. Limnology and Oceanography, 1983, 28(3): 568−574. doi: 10.4319/lo.1983.28.3.0568
    [57] Falkowski P G. Rationalizing elemental ratios in unicellular algae[J]. Journal of Phycology, 2000, 36(1): 3−6. doi: 10.1046/j.1529-8817.2000.99161.x
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  286
  • HTML全文浏览量:  60
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-29
  • 修回日期:  2021-10-18
  • 网络出版日期:  2021-11-02
  • 刊出日期:  2022-02-01

目录

    /

    返回文章
    返回