留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于观测数据的2003−2014年北冰洋海平面时空特征

郑璐曦 陈美香 任杰 余佳霖 陈宇洁 季韬 王雪竹 杨洁

郑璐曦,陈美香,任杰,等. 基于观测数据的2003−2014年北冰洋海平面时空特征[J]. 海洋学报,2022,44(3):25–39 doi: 10.12284/hyxb2022027
引用本文: 郑璐曦,陈美香,任杰,等. 基于观测数据的2003−2014年北冰洋海平面时空特征[J]. 海洋学报,2022,44(3):25–39 doi: 10.12284/hyxb2022027
Zheng Luxi,Chen Meixiang,Ren Jie, et al. Characteristics of the sea level in the Arctic Ocean based on observation data from 2003 to 2014[J]. Haiyang Xuebao,2022, 44(3):25–39 doi: 10.12284/hyxb2022027
Citation: Zheng Luxi,Chen Meixiang,Ren Jie, et al. Characteristics of the sea level in the Arctic Ocean based on observation data from 2003 to 2014[J]. Haiyang Xuebao,2022, 44(3):25–39 doi: 10.12284/hyxb2022027

基于观测数据的2003−2014年北冰洋海平面时空特征

doi: 10.12284/hyxb2022027
基金项目: 国家重点研发计划(2017YFA0604600);国家自然科学基金(42076233,41806218);江苏省自然科学基金(BK20180510)。
详细信息
    作者简介:

    郑璐曦(1999—),女,江苏省南京市人,主要从事北极海平面和海冰研究。E-mail: luxi_zheng@163.com

    通讯作者:

    陈美香( 1981—),女,山东省高密市人,副教授,博士,主要从事气候与海平面变化研究。E-mail: chenmeixiang@hhu.edu.cn

  • 中图分类号: P727;P731.23

Characteristics of the sea level in the Arctic Ocean based on observation data from 2003 to 2014

  • 摘要: 本文对比了3个不同机构提供的北冰洋月均高度计数据,发现英国极地观测与建模中心和丹麦科技大学空间中心两套数据比较一致且空间覆盖率高,适用于北冰洋海平面变化研究,而前者在数据分辨率、平滑性和与验潮站的符合程度方面均更优。对高度计和验潮站数据的分析表明,北冰洋海平面的气候态特征表现为加拿大海盆的高值和欧亚海盆的低值之间形成鲜明对比;海平面的变化以季节变化和北极涛动引起的低频变化为主,加拿大海盆的季节和年际振幅均较大,俄罗斯沿岸海平面季节变化显著。2003−2014年,北冰洋平均海平面呈上升趋势,其中加拿大海盆海平面上升最快,而俄罗斯沿岸海平面有微弱下降趋势。加拿大海盆和俄罗斯沿岸由于海冰变化显著,不同高度计产品以及高度计与验潮站数据之间差别较大,使用时需慎重。
  • 图  1  北冰洋地理概况和验潮站分布

    图中红点和蓝点为验潮站位置,其中红点是与高度计对比的站位

    Fig.  1  Geography of the Arctic Ocean and location of tide gauges

    Tide gauges are marked with dots, data of red dots are compared with altimeters

    图  2  北冰洋沿岸验潮站数据时间跨度(序号对应的站位信息见附录)

    Fig.  2  Time span of the tide gauge records along the coast of the Arctic Ocean (see appendix for detailed information of the tide gauges)

    图  3  北冰洋2003−2014年平均海面高度空间分布(Armitage(a)、DTU(b)、Copernicus(c))及Armitag与DTU海面高度距平数据差异(d)

    Fig.  3  Spatial distribution of the mean sea surface height for the period 2003–2014 in the Arctic Ocean (Armitage (a), DTU (b), Copernicus (c)) and the difference of sea surface height anomaly between Armitage and DTU datasets (d)

    图  4  月均海面高度距平的标准差

    a. Armitage;b. DTU;c. Armitage与DTU的差异

    Fig.  4  Standard deviation of monthly sea surface height anomaly

    a. Armitage; b. DTU; c. difference between Armitage and DTU

    图  5  北冰洋海平面变化的季节模态

    Fig.  5  Seasonal modes of sea level variability in the Arctic Ocean

    图  6  年均海面高度的标准差

    a. Armitage;b. DTU;c. Armitage与DTU的差异

    Fig.  6  Standard deviation of annual sea surface height

    a. Armitage; b. DTU; c. difference between Armitage and DTU

    图  7  北冰洋海平面的低频变化模态

    Fig.  7  Low-frequency modes of sea level variability in the Arctic Ocean

    图  8  累积北极涛动指数与海面高度的相关系数

    Fig.  8  Correlation coefficient between cumulative Arctic Oscillation index and sea surface height

    图  9  2003-2014年北冰洋海面高度变化速率

    a. Armitage;b. DTU;c. Armitage与DTU的差异

    Fig.  9  Rate of sea surface height in the Arctic Ocean from 2003 to 2014

    a. Armitage; b. DTU; c. difference between Armitage and DTU

    图  10  北冰洋区域划分及区域年均海面高度时间序列

    a. 区域划分;b. 北冰洋平均海面高度与夏季海冰面积;c. 波弗特海区;d. 俄罗斯沿岸区;e. 北欧海区

    Fig.  10  Regional division of the Arctic Ocean and time series of regional annual-mean sea surface height

    a. Regional division; b. mean sea surface height and summer sea ice area of the Arctic Ocean; c. Beaufort Sea; d. Russian coastal area; e. Nordic sea area

    表  1  高度计与验潮站月均海面高度距平数据的比较

    Tab.  1  Comparison of monthly sea surface height anomaly from altimeter and tide gauges

    站位名称站位序号位置观测年数距离/km
    (Armitage)
    斜率
    (Armitage)
    标准差/cm
    (Armitage)
    相关系数
    (Armitage)
    距离/km
    (DTU)
    斜率
    (DTU)
    标准差/cm
    (DTU)
    相关系数
    (DTU)
    SANNIKOVA60274.7°N, 138.9°E11170.3112.010.35(0.01)110.178.290.27(0.10)
    PEVEK60669.7°N, 170.3°E10780.309.880.48(0.01)890.228.160.42(0.01)
    DUNAI64073.9°N, 124.5°E8830.157.150.38(0.01)1110.086.240.22(0.03)
    KOTELNYI64176.0°N, 137.9°E11720.288.360.40(0.01)1000.175.820.35(0.01)
    KIGILIAH64273.3°N, 140.0°E111110.6512.930.66(0.01)1110.318.290.50(0.01)
    拉普捷夫海和东西伯利亚海10720.3410.070.45840.197.360.35
    AMDERMA59969.8°N, 61.7°E11220.408.390.59(0.01)1330.255.880.54(0.01)
    UST60069.3°N, 64.5°E11830.1710.090.24(0.01)1110.176.470.38(0.01)
    STERLEGOVA61275.4°N, 88.9°E101220.269.630.44(0.01)1000.159.460.27(0.01)
    IZVESTIA72876.0°N, 83.0°E11270.378.280.53(0.01)00.267.620.41(0.01)
    GOLOMIANYI72979.6°N, 90.6°E8160.214.840.32(0.01)1220.246.710.26(0.01)
    喀拉海11540.288.250.42930.217.230.37
    VARDO52470.4°N, 31.1°E121220.445.340.63(0.01)1220.546.180.67(0.01)
    HAMMERFEST75870.7°N, 23.7°E12500.435.330.65(0.01)1330.566.940.64(0.01)
    HONNINGSVAG126771.0°N, 26.0°E121110.425.080.63(0.01)00.576.740.64(0.01)
    巴伦支海12940.435.250.64850.566.620.65
    TUKTOYAKTUK100069.4°N, 227.0°E121110.316.950.62(0.01)560.178.810.27(0.01)
    ALASKA185770.4°N, 211.5°E121670.295.040.63(0.01)1110.167.700.23(0.01)
    波弗特海121390.306.000.63840.178.260.25
      注:对于每个验潮站,表中显示了站点的名称、序号、位置、2003−2014年的资料重叠年数、高度计网格点与验潮站位置之间的距离、高度计和验潮站月均数据散点图的线性拟合斜率、高度计数据与线性拟合值的残差标准差以及高度计与验潮站时间序列的相关系数,相关系数括号内数值表示显著性水平。拉普捷夫海和东西伯利亚海、喀拉海、巴伦支海、波弗特海的平均值均以加粗显示。
    下载: 导出CSV

    A1  北冰洋沿岸验潮站的主要信息

    A1  Main information of tide gauges along the Arctic Ocean

    序号站名站位号纬度经度所属国家观测年数
    1KABELVAG4568.213°N14.482°ENOR91
    2OULU / ULEABORG7965.04°N25.418°EFIN11
    3KEMI22965.673°N24.515°EFIN1
    4NARVIK31268.428°N17.426°ENOR81
    5LINAKHAMARI36569.65°N31.367°ERUS25
    6ANDENES42569.326°N16.135°ENOR41
    7BERLEVAG44270.85°N29.1°ENOR11
    8VARDO52470.375°N31.104°ENOR1
    9EVENSKJAER53168.583°N16.55°ENOR71
    10BARENTSBURG54178.067°N14.25°ESJM1
    11BARENTSBURG II (SPITSBERGEN)54778.067°N14.25°ESJM2
    12BODO56267.288°N14.391°ENOR101
    13TIKSI (TIKSI BUKHTA)56971.583°N128.917°ERUS447
    14AMDERMA59969.75°N61.7°ERUS310
    15UST KARA60069.25°N64.517°ERUS315
    16FEDOROVA (CHELUSKIN MYS)60177.717°N104.3°ERUS392
    17SANNIKOVA (SANNIKOVA PROLIV)60274.667°N138.9°ERUS480
    18SHALAUROVA (SHALAUROVA MYS)60373.183°N143.233°ERUS516
    19AMBARCHIK60469.617°N162.3°ERUS535
    20RAU-CHUA60569.5°N166.583°ERUS556
    21PEVEK60669.7°N170.25°ERUS567
    22VANKAREM60767.833°N175.833°WRUS630
    23VRANGELIA (VRANGELIA OSTROV)60870.983°N178.483°WRUS620
    24MALYE KARMAKULY60972.367°N52.7°ERUS16
    25UST OLENEK61073°N119.867°ERUS435
    26DIKSON61173.5°N80.4°ERUS345
    27STERLEGOVA (STERLEGOVA MYS)61275.417°N88.9°ERUS365
    28NETTEN61366.967°N171.933°WRUS650
    29PRAVDY (PRAVDY OSTROV)61576.267°N94.767°ERUS378
    30MYS SHMIDTA61668.9°N179.367°WRUS610
    31RATMANOVA61765.85°N169.133°WRUS670
    32MALYI TAIMYR (MALYI TAIMYR OSTROV)62078.083°N106.817°ERUS414
    33KOLUCHIN62167.483°N174.65°WRUS640
    34UGORSKII SHAR (UGORSKII SHAR PROLIV)62269.817°N60.75°ERUS308
    35DUNAI (DUNAI OSTROV)64073.933°N124.5°ERUS440
    36KOTELNYI (KOTELNYI OSTROV)64176°N137.867°ERUS475
    37KIGILIAH64273.333°N139.867°ERUS485
    38ANDREIA (ANDREIA OSTROV)64676.8°N110.75°ERUS410
    39ZHELANIA II (ZHELANIA MYS)64776.95°N68.55°ERUS321
    40GEIBERGA (GEIBERGA OSTROV)64877.6°N101.517°ERUS387
    41MUOSTAH ( MUOSTAH OSTROV)64971.55°N130.033°ERUS455
    42CHETYREHSTOLBOVOI65070.633°N162.483°ERUS550
    43BOLVANSKII NOS (FEDOROVA)65170.45°N59.083°ERUS305
    44PREOBRAZHENIA (PREOBRAZHENIA OSTROV)65274.667°N112.933°ERUS418
    45POPOVA (BELYI OSTROV)65373.333°N70.05°ERUS325
    46LESKINA (LESKINA MYS)65472.317°N79.567°ERUS340
    47RUSSKII (RUSSKII OSTROV)65577.167°N96.433°ERUS380
    48SOLNECHNAIA (SOLNECHNAIA BUKHTA)65678.2°N103.267°ERUS390
    49SVIATOI NOS (SVIATOI NOS MYS)65772.833°N140.733°ERUS397
    50ZEMLIA BUNGE65874.883°N142.117°ERUS510
    51MARII PRONCHISHEVOI (BUKHTA)66775.533°N113.433°ERUS420
    52TROMSO68069.647°N18.961°ENOR31
    53HARSTAD68168.801°N16.548°ENOR61
    54MURMANSK68468.967°N33.05°ERUS18
    55MURMANSK II68768.967°N33.05°ERUS19
    56VISE (VISE OSTROV)70479.5°N76.983°ERUS338
    57UEDINENIA (UEDINENIA OSTROV)70777.5°N82.2°ERUS348
    58BILLINGA70869.883°N175.767°ERUS578
    59UADEI70971.517°N136.417°ERUS468
    60RUSSKAIA GAVAN II71076.183°N62.583°ERUS3
    61RUSSKAYA GAVAN71176.2°N62.583°ERUS1
    62IZVESTIA TSIK (IZVESTIA TSIK OSTROVA)72875.95°N82.95°ERUS360
    63GOLOMIANYI (GOLOMIANYI OSTROV)72979.55°N90.617°ERUS374
    64AION73069.933°N167.983°ERUS560
    65MORZHOVAIA (HARASAVEI MYS)73271.417°N67.583°ERUS318
    66ISACHENKO (ISACHENKO OSTROV)73477.15°N89.2°ERUS370
    67BUORHAIA (BUORHAIA MYS)73571.95°N132.767°ERUS464
    68KOSYSTYI (KOSYSTYI MYS)73673.65°N109.733°ERUS394
    69KRASNOFLOTSKIE (KRASNOFLOTSKIE OSTROVA)73878.6°N98.833°ERUS385
    70MALYSHEVA (MALYSHEVA OSTROV)74172.067°N129.833°ERUS452
    71HAMMERFEST75870.665°N23.683°ENOR21
    72TADIBE-IAHA76770.367°N72.567°ERUS328
    73MOSJOEN78165.85°N13.2°ENOR121
    74TERPIAI-TUMSA79073.55°N118.667°ERUS430
    75VALKARKAI79270.083°N170.933°ERUS570
    76NEMKOVA (NEMKOVA OSTROV)79771.417°N150.75°ERUS521
    77BRONNOYSUND80365.483°N12.217°ENOR131
    78BELYI NOS85969.6°N60.217°ERUS7
    79RESOLUTE86374.683°N94.883°WCAN151
    80SOPOCHNAIA KARGA91771.867°N82.7°ERUS351
    81ZHOHOVA (ZHOHOVA OSTROV)93776.15°N152.833°ERUS528
    82TUKTOYAKTUK100069.417°N132.967°WCAN211
    83PESCHANYI (PESCHANYI MYS)100679.433°N102.483°ERUS405
    84KRENKELIA (HEISA OSTROV)101280.617°N58.05°ERUS14
    85SAGYLLAH-ARY101973.15°N128.883°ERUS443
    86ALERT111082.49°N62.32°WCAN162
    87ANTIPAIUTA112869.083°N76.85°ERUS335
    88CAMBRIDGE BAY113269.117°N105.067°WCAN191
    89SANDNESSJOEN113766.017°N12.633°ENOR117
    90SE-LAHA120070.15°N72.567°ERUS331
    91VADSO125770.067°N29.75°ENOR5
    92HONNINGSVAG126770.98°N25.973°ENOR15
    93CAPE PARRY128270.15°N124.667°WCAN201
    94BYKOV MYS (BYKOV MYS)139972°N129.117°ERUS449
    95NY-ALESUND142178.929°N11.938°ESJM21
    96NAIBA149770.85°N130.75°ERUS460
    97ANABAR178073.217°N113.5°ERUS425
    98LITTLE CORNWALLIS ISLAND182275.383°N96.95°WCAN156
    99PRUDHOE BAY, ALASKA185770.4°N148.527°WUSA2
    100ULUKHAKTOK (FORMERLY HOLMAN )193070.736°N117.761°WCAN199
    101QIKIQTARJUAQ193567.867°N64.117°WCAN135
    102BUGRINO202568.8°N49.333°ERUS10
    103MYS PIKSHUEVA202669.55°N32.433°ERUS30
    104POLYARNIY202769.2°N33.483°ERUS20
    105TERIBERKA202869.2°N35.117°ERUS23
    106KALIX210165.697°N23.096°ESWE205
      注:所属国家一栏中,RUS表示俄罗斯,NOR表示挪威,CAN表示加拿大,SJM表示斯瓦尔巴群岛和扬马延岛,USA表示美国,SWE表示瑞典。
    下载: 导出CSV
  • [1] Proshutinsky A, Pavlov V, Bourke R H. Sea level rise in the Arctic Ocean[J]. Geophysical Research Letters, 2001, 28(11): 2237−2240. doi: 10.1029/2000GL012760
    [2] Stammer D, Cazenave A, Ponte R M, et al. Causes for contemporary regional sea level changes[J]. Annual Review of Marine Science, 2013, 5(1): 21−46. doi: 10.1146/annurev-marine-121211-172406
    [3] Griffies S M, Yin Jianjun, Durack P J, et al. An assessment of global and regional sea level for years 1993−2007 in a suite of interannual CORE-II simulations[J]. Ocean Modelling, 2014, 78: 35−89. doi: 10.1016/j.ocemod.2014.03.004
    [4] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, USA: Cambridge University Press, 2013.
    [5] Rhein M, Rintoul S R, Aoki S, et al. Observations: Ocean Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press, 2013: 255−316.
    [6] Serreze M C, Barrett A P, Stroeve J C, et al. The emergence of surface-based Arctic amplification[J]. The Cryosphere, 2009, 3(1): 11−19. doi: 10.5194/tc-3-11-2009
    [7] Serreze M C, Barry R G. Processes and impacts of Arctic amplification: a research synthesis[J]. Global and Planetary Change, 2011, 77(1/2): 85−96.
    [8] Shepherd A, Ivins E R, Geruo A, et al. A reconciled estimate of ice-sheet mass balance[J]. Science, 2012, 338(6111): 1183−1189. doi: 10.1126/science.1228102
    [9] Velicogna I, Sutterley T C, Van Den Broeke M R. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data[J]. Geophysical Research Letters, 2014, 41(22): 8130−8137. doi: 10.1002/2014GL061052
    [10] Gardner A S, Moholdt G, Cogley J G, et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009[J]. Science, 2013, 340(6134): 852−857. doi: 10.1126/science.1234532
    [11] Kouraev A V, Papa F, Mognard N M, et al. Sea ice cover in the Caspian and Aral Seas from historical and satellite data[J]. Journal of Marine Systems, 2004, 47(1/4): 89−100.
    [12] Kwok R, Cunningham G F, Wensnahan M, et al. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003−2008[J]. Journal of Geophysical Research: Oceans, 2009, 114(C7): C07005.
    [13] Comiso J C. Large decadal decline of the Arctic multiyear ice cover[J]. Journal of Climate, 2012, 25(4): 1176−1193. doi: 10.1175/JCLI-D-11-00113.1
    [14] Cavalieri D J, Parkinson C L. Antarctic sea ice variability and trends, 1979−2006[J]. Journal of Geophysical Research: Oceans, 2008, 113(C7): C07004.
    [15] Stroeve J C, Kattsov V, Barrett A, et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations[J]. Geophysical Research Letters, 2012, 39(16): L16502.
    [16] Laxon S W, Giles K A, Ridout A L, et al. CryoSat-2 estimates of Arctic sea ice thickness and volume[J]. Geophysical Research Letters, 2013, 40(4): 732−737. doi: 10.1002/grl.50193
    [17] Proshutinsky A, Krishfield R, Timmermans M L, et al. Beaufort Gyre freshwater reservoir: state and variability from observations[J]. Journal of Geophysical Research: Oceans, 2009, 114(C1): C00A10.
    [18] McPhee M G, Proshutinsky A, Morison J H, et al. Rapid change in freshwater content of the Arctic Ocean[J]. Geophysical Research Letters, 2009, 36(10): L10602. doi: 10.1029/2009GL037525
    [19] Rabe B, Karcher M, Schauer U, et al. An assessment of Arctic Ocean freshwater content changes from the 1990s to the 2006−2008 period[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58(2): 173−185. doi: 10.1016/j.dsr.2010.12.002
    [20] Polyakov I V, Bhatt U S, Walsh J E, et al. Recent oceanic changes in the Arctic in the context of long-term observations[J]. Ecological Applications, 2013, 23(8): 1745−1764. doi: 10.1890/11-0902.1
    [21] Haine T W N, Curry B, Gerdes R, et al. Arctic freshwater export: status, mechanisms, and prospects[J]. Global and Planetary Change, 2015, 125: 13−35. doi: 10.1016/j.gloplacha.2014.11.013
    [22] Armitage T W K, Bacon S, Ridout A L, et al. Arctic Ocean surface geostrophic circulation 2003−2014[J]. The Cryosphere, 2017, 11(4): 1767−1780. doi: 10.5194/tc-11-1767-2017
    [23] Armitage T W K, Bacon S, Kwok R. Arctic sea level and surface circulation response to the Arctic Oscillation[J]. Geophysical Research Letters, 2018, 45(13): 6576−6584. doi: 10.1029/2018GL078386
    [24] Regan H C, Lique C, Armitage T W K. The Beaufort Gyre extent, shape, and location between 2003 and 2014 from satellite observations[J]. Journal of Geophysical Research: Oceans, 2019, 124(2): 844−862. doi: 10.1029/2018JC014379
    [25] Manabe S, Stouffer R J. Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean[J]. Nature, 1995, 378(6553): 165−167. doi: 10.1038/378165a0
    [26] Belkin I M. Propagation of the “Great Salinity Anomaly” of the 1990s around the northern North Atlantic[J]. Geophysical Research Letters, 2004, 31(8): L08306.
    [27] Proshutinsky A Y, Johnson M A. Two circulation regimes of the wind-driven Arctic Ocean[J]. Journal of Geophysical Research: Oceans, 1997, 102(C6): 12493−12514. doi: 10.1029/97JC00738
    [28] Henry O, Prandi P, Llovel W, et al. Tide gauge-based sea level variations since 1950 along the Norwegian and Russian coasts of the Arctic Ocean: contribution of the steric and mass components[J]. Journal of Geophysical Research: Oceans, 2012, 117(C6): C06023.
    [29] Holgate S J, Matthews A, Woodworth P L, et al. New data systems and products at the permanent service for mean sea level[J]. Journal of Coastal Research, 2013, 29(3): 493−504.
    [30] Koldunov N V, Serra N, Köhl A, et al. Multimodel simulations of Arctic Ocean sea surface height variability in the period 1970−2009[J]. Journal of Geophysical Research: Oceans, 2014, 119(12): 8936−8954. doi: 10.1002/2014JC010170
    [31] Prandi P, Ablain M, Cazenave A, et al. A new estimation of mean sea level in the Arctic Ocean from satellite altimetry[J]. Marine Geodesy, 2012, 35(S1): 61−81.
    [32] Cheng Yongcun, Andersen O, Knudsen P. An improved 20-year Arctic Ocean altimetric sea level data record[J]. Marine Geodesy, 2015, 38(2): 146−162. doi: 10.1080/01490419.2014.954087
    [33] Armitage T W K, Bacon S, Ridout A L, et al. Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003−2014[J]. Journal of Geophysical Research: Oceans, 2016, 121(6): 4303−4322. doi: 10.1002/2015JC011579
    [34] Peacock N R, Laxon S W. Sea surface height determination in the Arctic Ocean from ERS altimetry[J]. Journal of Geophysical Research: Oceans, 2004, 109(C7): C07001.
    [35] Giles K A, Laxon S W, Ridout A L, et al. Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre[J]. Nature Geoscience, 2012, 5(3): 194−197. doi: 10.1038/ngeo1379
    [36] Proshutinsky A, Ashik I, Häkkinen S, et al. Sea level variability in the Arctic Ocean from AOMIP models[J]. Journal of Geophysical Research: Oceans, 2007, 112(C4): C04S08.
    [37] Farrell S L, McAdoo D C, Laxon S W, et al. Mean dynamic topography of the Arctic Ocean[J]. Geophysical Research Letters, 2012, 39(1): L01601.
    [38] Xiao Kai, Chen Meixiang, Wang Qiang, et al. Low-frequency sea level variability and impact of recent sea ice decline on the sea level trend in the Arctic Ocean from a high-resolution simulation[J]. Ocean Dynamics, 2020, 70(6): 787−802. doi: 10.1007/s10236-020-01373-5
    [39] Peltier W R. Global sea level rise and glacial isostatic adjustment[J]. Global and Planetary Change, 1999, 20(2/3): 93−123.
    [40] Carret A, Johannessen J A, Andersen O B, et al. Arctic sea level during the satellite altimetry era[J]. Surveys in Geophysics, 2017, 38(1): 251−275. doi: 10.1007/s10712-016-9390-2
    [41] Thompson D W J, Wallace J M. The Arctic Oscillation signature in the wintertime geopotential height and temperature fields[J]. Geophysical Research Letters, 1998, 25(9): 1297−1300. doi: 10.1029/98GL00950
    [42] Wu Bingyi, Wang Jia, Walsh J E. Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion[J]. Journal of Climate, 2006, 19(2): 210−225. doi: 10.1175/JCLI3619.1
    [43] Wang Qiang. Stronger variability in the Arctic Ocean induced by sea ice decline in a warming climate: Freshwater storage, dynamic sea level and surface circulation[J]. Journal of Geophysical Research: Oceans, 2021, 126(3): e2020JC016886.
    [44] Wang Jia, Ikeda M. Arctic Oscillation and Arctic sea-ice oscillation[J]. Geophysical Research Letters, 2000, 27(9): 1287−1290. doi: 10.1029/1999GL002389
    [45] Morison J, Kwok R, Peralta-Ferriz C, et al. Changing Arctic ocean freshwater pathways[J]. Nature, 2012, 481(7379): 66−70. doi: 10.1038/nature10705
    [46] Wang Qiang, Wekerle C, Danilov S, et al. Recent sea ice decline did not significantly increase the total liquid freshwater content of the Arctic Ocean[J]. Journal of Climate, 2019, 32(1): 15−32. doi: 10.1175/JCLI-D-18-0237.1
    [47] Aagaard K, Carmack E C. The role of sea ice and other fresh water in the Arctic circulation[J]. Journal of Geophysical Research: Oceans, 1989, 94(C10): 14485−14498. doi: 10.1029/JC094iC10p14485
    [48] Calafat F M, Chambers D P, Tsimplis M N. Inter-annual to decadal sea-level variability in the coastal zones of the Norwegian and Siberian Seas: the role of atmospheric forcing[J]. Journal of Geophysical Research: Oceans, 2013, 118(3): 1287−1301. doi: 10.1002/jgrc.20106
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  126
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-15
  • 修回日期:  2021-09-26
  • 刊出日期:  2022-03-18

目录

    /

    返回文章
    返回