Response of daily increment of statolith of neon flying squid (Ommastrephes bartramii) for different cohorts to marine environment in the North Pacific
-
摘要: 为了研究北太平洋柔鱼(Ommastrephes bartramii)索饵场不同群体耳石日增量与环境之间的关系,采用梯度森林法和广义加性模型对2010−2016年在北太平洋采集的柔鱼进行了耳石日增量与海洋环境间的关系的分析。结果表明,柔鱼生命周期大约为1 a,秋生群体柔鱼个体的日龄范围为165~345 d,冬春生群体柔鱼个体的日龄范围为95~271 d。100 m水层海水温度、海表面温度、海表面盐度和混合层深度是影响柔鱼秋生群体耳石日生长的关键环境变量;100 m水层海水温度、海表面高度和叶绿素浓度是影响冬春生群体耳石日生长的关键环境变量。广义加性模型分析表明,耳石日增量宽度与梯度森林法筛选的关键环境变量存在显著关系(p <0.01)。不同群体的关键环境变量表明,温度和饵料丰度的变化对柔鱼生长有着显著的影响。Abstract: In order to study the relationship between daily increment of statolith and environment of neon flying squid (Ommastrephes bartramii) for different cohorts in the North Pacific during feeding ground, we explore the relationship between daily increment of statolith microstructure and environmental variables by gradient forest method (GFM) and generalized additive model (GAM) based on the samples collected in the North Pacific from 2010 to 2016. The results show that the life cycle of O. bartramii is about one year. The age of the autumn cohort ranges from 165 d to 345 d, and the age of winter-spring cohort ranges from 95 d to 271 d, respectively. Sea water temperature at the depth of 100 m (Temp_100), sea surface temperature (SST), sea surface salinity (SSS) and mixed layer depth (MLD) are the key environmental variables for the daily growth of autumn cohort. Temp_100, MLD, sea surface height (SSH) and chlorophyll a concentration (CHL) are the key environment variables for the daily growth of winter-spring cohort. GAM analysis shows that the daily increment width of statolith is significantly correlated with the key environmental variables selected by GFM (p<0.01). Key environmental variables of different cohorts suggest that the growth of O.bartrarnii is significantly affected by water temperature and prey abundance.
-
表 1 北太平洋柔鱼样本基本信息
Tab. 1 Basic information of Ommastrephes bartramii in the North Pacific
海域 月份 数量/尾 日龄/d 孵化高峰期 胴长/mm 东部海域 5−6月 188 165~345 8−10月 200~501 西部海域 7−10月 221 95~271 2−4月 162~345 表 2 关键环境变量对柔鱼耳石日增量宽度的GAM分析
Tab. 2 The key environment variables on daily increment width in Ommastrephes bartramii based on the generalized additive model (GAM) analyses
群体 环境变量 偏差解释率/% AIC R2 F p 显著性 秋生群体 Temp_100 96.2 −401.704 5 0.958 217.2 <0.000 1 *** SST 94.1 −363.818 1 0.935 136.7 <0.000 1 *** SSS 92.4 −348.225 3 0.919 144.5 <0.000 1 *** MLD 88.7 −317.438 0.882 134.8 <0.000 1 *** 冬春生群体 Temp_100 92.6 −519.3610 0.921 179.2 <0.000 1 *** MLD 75.2 −359.568 4 0.741 59.43 <0.000 1 *** SSH 56 −284.356 8 0.547 34.95 <0.000 1 *** CHL 51.5 −269.784 2 0.498 25.09 <0.000 1 *** 注:*** (p<0.000 1)。 -
[1] 王尧耕, 陈新军. 世界大洋性经济柔鱼类资源及其渔业[M]. 北京: 海洋出版社, 2005: 124-137.Wang Yaogeng, Chen Xinjun. The resource and biology of economic oceanic squid in the world[M]. Beijing: China Ocean Press, 2005: 124−137. [2] 马金, 陈新军, 刘必林, 等. 北太平洋柔鱼渔业生物学研究进展[J]. 上海海洋大学学报, 2011, 20(4): 563−570.Ma Jin, Chen Xinjun, Liu Bilin, et al. Review of fisheries biology of neon flying squid (Ommastrephes bartramii) in the North Pacific Ocean[J]. Journal of Shanghai Ocean University, 2011, 20(4): 563−570. [3] Murata M. Oceanic resources of squids[J]. Marine Behaviour and Physiology, 1990, 18(1): 19−71. doi: 10.1080/10236249009378779 [4] 陈新军. 渔业资源与渔场学[M]. 北京: 海洋出版社, 2004: 29−212.Chen Xinjun. Fisheries Resources and Fishing Ground[M]. Beijing: China Ocean Press, 2004: 29−212. [5] Yatsu A, Tanaka H, Mori J. Population structure of the neon flying squid, Ommastrephes bartramii, in the North Pacific Ocean[M]//Okutani T. Contributed Papers to International Symposium on Large Pelagic Squids. Tokyo: Japan Marine Fishery Resources Research Center, 1998: 31−48. [6] Yatsu A, Midorikawa S, Shimada T, et al. Age and growth of the neon flying squid, Ommastrephes bartrami, in the North Pacific Ocean[J]. Fisheries Research, 1997, 29(3): 257−270. doi: 10.1016/S0165-7836(96)00541-3 [7] 韩霈武, 李楠, 方舟, 等. 基于线性混合模型的不同群体柔鱼胴长体质量关系的异质性研究[J]. 南方水产科学, 2020, 16(6): 12−20. doi: 10.12131/20200117Han Peiwu, Li Nan, Fang Zhou, et al. Heterogeneity of mantle length-body mass relationship in different Ommastrephes bartramii populations based on linear mixed model[J]. South China Fisheries Science, 2020, 16(6): 12−20. doi: 10.12131/20200117 [8] Arkhipkin A, Argüelles J, Shcherbich Z, et al. Ambient temperature influences adult size and life span in jumbo squid (Dosidicus gigas)[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2015, 72(3): 400−409. doi: 10.1139/cjfas-2014-0386 [9] 方舟. 基于角质颚的北太平洋柔鱼渔业生态学研究[D]. 上海: 上海海洋大学, 2016.Fang Zhou. Fisheries ecology of neon flying squid Ommastrephes bartramii in North Pacific Ocean based on beak[D]. Shanghai: Shanghai Ocean University, 2016. [10] Fang Zhou, Li Jianhua, Thompson K, et al. Age, growth, and population structure of the red flying squid (Ommastrephes bartramii) in the North Pacific Ocean, determined from beak microstructure[J]. Fishery Bulletin, 2016, 114(1): 34−44. doi: 10.7755/FB.114.1.3 [11] Chen Xinjun, Li Jianhua, Liu Bilin, et al. Age, growth and population structure of jumbo flying squid, Dosidicus gigas, off the Costa Rica Dome[J]. Journal of the Marine Biological Association of the United Kingdom, 2013, 93(2): 567−573. doi: 10.1017/S0025315412000422 [12] Campana S E, Neilson J D. Microstructure of fish otoliths[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1985, 42(5): 1014−1032. doi: 10.1139/f85-127 [13] 肖述, 郑小东, 王如才, 等. 头足类耳石轮纹研究进展[J]. 中国水产科学, 2003, 10(1): 73−78. doi: 10.3321/j.issn:1005-8737.2003.01.016Xiao Shu, Zheng Xiaodong, Wang Rucai, et al. Current status and prospects of the research on increments of statoliths in Cephalopods[J]. Journal of Fishery Sciences of China, 2003, 10(1): 73−78. doi: 10.3321/j.issn:1005-8737.2003.01.016 [14] Radtke R L. Chemical and structural characteristics of statoliths from the short-finned squid Illex illecebrosus[J]. Marine Biology, 1983, 76(1): 47−54. doi: 10.1007/BF00393054 [15] Miyahara K, Ota T, Goto T, et al. Age, growth and hatching season of the diamond squid Thysanoteuthis rhombus estimated from statolith analysis and catch data in the western Sea of Japan[J]. Fisheries Research, 2006, 80(2/3): 211−220. [16] Bounket B, Gibert P, Gennotte V, et al. Otolith shape analysis and daily increment validation during ontogeny of larval and juvenile European chub Squalius cephalus[J]. Journal of Fish Biology, 2019, 95(2): 444−452. doi: 10.1111/jfb.13976 [17] Vignon M, Morat F. Environmental and genetic determinant of otolith shape revealed by a non-indigenous tropical fish[J]. Marine Ecology Progress Series, 2010, 411: 231−241. doi: 10.3354/meps08651 [18] Maillet G L, Checkley D M Jr. Storm-related variation in the growth rate of otoliths of larval Atlantic menhaden Brevoortia tyrannus: a time series analysis of biological and physical variables and implications for larva growth and mortality[J]. Marine Ecology Progress Series, 1991, 79: 1−16. doi: 10.3354/meps079001 [19] Gallego A, Heath M R, McKenzie E, et al. Environmentally induced short-term variability in the growth rates of larval herring[J]. Marine Ecology Progress Series, 1996, 137: 11−23. doi: 10.3354/meps137011 [20] Sun Peng, Chen Qi, Fu Caihong, et al. Daily growth of young-of-the-year largehead hairtail (Trichiurus japonicus) in relation to environmental variables in the East China Sea[J]. Journal of Marine Systems, 2020, 201: 103243. doi: 10.1016/j.jmarsys.2019.103243 [21] Fang Zhou, Liu Bilin, Chen Xinjun, et al. Ontogenetic difference of beak elemental concentration and its possible application in migration reconstruction for Ommastrephes bartramii in the North Pacific Ocean[J]. Acta Oceanologica Sinica, 2019, 38(10): 43−52. doi: 10.1007/s13131-019-1431-5 [22] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 12763.6−2007, 海洋调查规范 第6部分: 海洋生物调查[S]. 北京: 中国标准出版社, 2008.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 12763.6−2007, Specifications for oceanographic survey—Part 6: Marine biological survey[S]. Beijing: Standards Press of China, 2008. [23] Bower J R, Ichii T. The red flying squid (Ommastrephes bartramii): a review of recent research and the fishery in Japan[J]. Fisheries Research, 2005, 76(1): 39−55. doi: 10.1016/j.fishres.2005.05.009 [24] Hu Dunxin, Wu Lixin, Cai Wenju, et al. Pacific western boundary currents and their roles in climate[J]. Nature, 2015, 522(7556): 299−308. doi: 10.1038/nature14504 [25] 陈新军. 关于西北太平洋的柔鱼渔场形成的海洋环境因子的分析[J]. 上海水产大学学报, 1997, 6(4): 263−267.Chen Xinjun. An analysis on marine environment factors of fishing ground of Ommastrephes bartrami in Northwestern Pacific[J]. Journal of Shanghai Fisheries University, 1997, 6(4): 263−267. [26] 刘必林, 陈新军, 陆化杰, 等. 头足类耳石[M]. 北京: 科学出版社, 2011: 23−160.Liu Bilin, Chen Xinjun, Lu Huajie, et al. Cephalopod Statolith[M]. Beijing: Science Press, 2011: 23−160. [27] 唐峰华, 杨胜龙, 范秀梅, 等. 基于Argo的西北太平洋公海柔鱼渔场垂直水温结构的变化特征[J]. 上海海洋大学学报, 2019, 28(3): 427−437.Tang Fenghua, Yang Shenglong, Fan Xiumei, et al. Variation characteristics of vertical water temperature structure of neon flying squid fishery in northwestern Pacific Ocean based on Argo[J]. Journal of Shanghai Ocean University, 2019, 28(3): 427−437. [28] 陈峰. 西北太平洋柔鱼渔场与水温垂直结构关系[D]. 上海: 上海海洋大学, 2011.Chen Feng. Relationship between fishing ground of Ommastrephes bartramii and vertical temperature structure in Northwestern Pacific Ocean[D]. Shanghai: Shanghai Ocean University, 2016. [29] Yu Wei, Chen Xinjun, Yi Qian, et al. Influence of oceanic climate variability on stock level of western winter-spring cohort of Ommastrephes bartramii in the Northwest Pacific Ocean[J]. International Journal of Remote Sensing, 2016, 37(17): 3974−3994. doi: 10.1080/01431161.2016.1204477 [30] 沈新强, 王云龙, 袁骐, 等. 北太平洋鱿鱼渔场叶绿素a分布特点及其与渔场的关系[J]. 海洋学报, 2004, 26(6): 118−123.Shen Xinqiang, Wang Yunlong, Yuan Qi, et al. Distributional characteristics of chlorophyll a and relation to the fishing ground in the squid fishing ground of the northern Pacific Ocean[J]. Haiyang Xuebao, 2004, 26(6): 118−123. [31] 张孝民, 朱清澄, 花传祥. 2013年北太平洋公海秋刀鱼渔场与海洋环境的关系[J]. 上海海洋大学学报, 2015, 24(5): 773−782.Zhang Xiaomin, Zhu Qingcheng, Hua Chuanxiang. Fishing ground distribution of saury and its correlation with marine environment factors in the Northern Parcific hign sea in 2013[J]. Journal of Shanghai Ocean University, 2015, 24(5): 773−782. [32] Hwang P P, Lee T H. New insights into fish ion regulation and mitochondrion-rich cells[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2007, 148(3): 479−497. [33] Ellis N, Smith S J, Pitcher C R. Gradient forests: calculating importance gradients on physical predictors[J]. Ecology, 2012, 93(1): 156−168. doi: 10.1890/11-0252.1 [34] Yemane D, Field J G, Leslie R W. Spatio-temporal patterns in the diversity of demersal fish communities off the south coast of South Africa[J]. Marine Biology, 2010, 157(2): 269−281. doi: 10.1007/s00227-009-1314-y [35] Planque B, Bellier E, Lazure P. Modelling potential spawning habitat of sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) in the Bay of Biscay[J]. Fisheries Oceanography, 2007, 16(1): 16−30. doi: 10.1111/j.1365-2419.2006.00411.x [36] Swartzman G, Huang C S, Kaluzny S. Spatial analysis of Bering sea groundfish survey data using generalized additive models[J]. Canadian Journal of Fisheries and Aquatic Sciences, 1992, 49(7): 1366−1378. doi: 10.1139/f92-152 [37] Liu Bilin, Chen Xinjun, Yi Qian. A comparison of fishery biology of jumbo flying squid, Dosidicus gigas outside three Exclusive Economic Zones in the Eastern Pacific Ocean[J]. Chinese Journal of Oceanology and Limnology, 2013, 31(3): 523−533. doi: 10.1007/s00343-013-2182-3 [38] Kurita Y, Nemoto Y, Oozeki Y, et al. Variations in patterns of daily changes in otolith increment widths of 0+ Pacific saury, Cololabis saira, off Japan by hatch date in relation to the northward feeding migration during spring and summer[J]. Fisheries Oceanography, 2004, 13(S1): 54−62. doi: 10.1111/j.1365-2419.2004.00312.x [39] Kikko T, Ishizaki D, Yodo T, et al. Daily growth increments in otoliths of wild-caught honmoroko Gnathopogon caerulescens[J]. Journal of Fish Biology, 2019, 95(2): 668−672. doi: 10.1111/jfb.14008 [40] Jackson G D, Moltschaniwskyj N A. The influence of ration level on growth and statolith increment width of the tropical squid Sepioteuthis lessoniana (Cephalopoda: Loliginidae): an experimental approach[J]. Marine Biology, 2001, 138(4): 819−825. doi: 10.1007/s002270000496 [41] 余为. 西北太平洋柔鱼冬春生群对气候与环境变化的响应机制研究[D]. 上海: 上海海洋大学, 2016.Yu Wei. Response mechanism of winter-spring cohort of neon flying squid to the climatic and environmental variability in the Northwest Pacific Ocean[D]. Shanghai: Shanghai Ocean University, 2016. [42] 金岳. 北太平洋柔鱼东西部群体的角质颚比较研究[D]. 上海: 上海海洋大学, 2015.Jin Yue. Comparison of western and eastern cohorts on neon flying squid Ommastrephes bartramii based on the beak in the North Pacific[D]. Shanghai: Shanghai Ocean University, 2015. [43] Zumholz K. The influence of environmental factors on the micro-chemical composition of cephalopod statoliths[D]. Kiel, Germany: University of Kiel, 2005. [44] 安玉柱, 张韧, 王辉赞, 等. 全球大洋混合层深度的计算及其时空变化特征分析[J]. 地球物理学报, 2012, 55(7): 2249−2258. doi: 10.6038/j.issn.0001-5733.2012.07.011An Yuzhu, Zhang Ren, Wang Huizan, et al. Study on calculation and spatio-temporal variations of global ocean mixed layer depth[J]. Chinese Journal of Geophysics, 2012, 55(7): 2249−2258. doi: 10.6038/j.issn.0001-5733.2012.07.011 [45] Chen C S, Chiu T S. Abundance and spatial variation of Ommastrephes bartramii (Mollusca: Cephalopoda) in the Eastern North Pacific observed from an exploratory survey[J]. Acta Zoologica Taiwanica, 1999, 10(2): 135−144. [46] 王韫沛, 陈新军, 余为. 西北太平洋柔鱼渔场重心变化及其与环境的关系[J]. 上海海洋大学学报, 2020, 29(6): 899−909. doi: 10.12024/jsou.20190802770Wang Yunpei, Chen Xinjun, Yu Wei. Variations of gravity centers of fishing ground for neon flying squid Ommastrephes bartramii in the northwest Pacific Ocean and its relation with marine environment[J]. Journal of Shanghai Ocean University, 2020, 29(6): 899−909. doi: 10.12024/jsou.20190802770 [47] Rosa R, Seibel B A. Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(52): 20776−20780. doi: 10.1073/pnas.0806886105 [48] Nishikawa H, Igarashi H, Ishikawa Y, et al. Impact of paralarvae and juveniles feeding environment on the neon flying squid (Ommastrephes bartramii) winter-spring cohort stock[J]. Fisheries Oceanography, 2014, 23(4): 289−303. doi: 10.1111/fog.12064 [49] 陈新军. 西北太平洋柔鱼渔场与水温因子的关系[J]. 上海水产大学学报, 1995, 4(3): 181−185.Chen Xinjun. An approach to the relationship between the squid fishing ground and water temperature in the Northwestern Pacific[J]. Journal of Shanghai Fisheries University, 1995, 4(3): 181−185. [50] Hao Jiajia, Chen Yongli, Wang Fan. Long-term variability of the sharp thermocline in the Yellow and East China Seas[J]. Chinese Journal of Oceanology and Limnology, 2012, 30(6): 1016−1025. doi: 10.1007/s00343-012-1251-3 [51] Yu Wei, Chen Xinjun, Yi Qian, et al. Spatio-temporal distributions and habitat hotspots of the winter-spring cohort of neon flying squid Ommastrephes bartramii in relation to oceanographic conditions in the Northwest Pacific Ocean[J]. Fisheries Research, 2016, 175: 103−115. doi: 10.1016/j.fishres.2015.11.026 [52] 冯志萍, 余为, 陈新军, 等. 基于最大熵模型的智利外海竹筴鱼栖息地研究[J]. 中国水产科学, 2021, 28(4): 431−441.Feng Zhiping, Yu Wei, Chen Xinjun, et al. Distribution of Chilean jack mackerel (Trachurus murphyi) habitats off Chile based on a maximum entropy model[J]. Journal of Fishery Sciences of China, 2021, 28(4): 431−441. [53] 张嘉容, 杨晓明, 戴小杰, 等. 南太平洋长鳍金枪鱼延绳钓渔获率与环境因子的关系研究[J]. 南方水产科学, 2020, 16(1): 69−77. doi: 10.12131/20190178Zhang Jiarong, Yang Xiaoming, Dai Xiaojie, et al. Relationship between catch rate of longline albacore (Thunnus alalunga) and environmental factors in South Pacific[J]. South China Fisheries Science, 2020, 16(1): 69−77. doi: 10.12131/20190178 [54] 方舟, 陈新军, 瞿俊跃, 等. 北太平洋柔鱼角质颚形态及生长年间差异[J]. 上海海洋大学学报, 2020, 29(1): 109−120. doi: 10.12024/jsou.20181202485Fang Zhou, Chen Xinjun, Qu Junyue, et al. Annual variation of beak morphology and growth models for neon flying squid (Ommastrephes bartramii) in north Pacific Ocean[J]. Journal of Shanghai Ocean University, 2020, 29(1): 109−120. doi: 10.12024/jsou.20181202485