留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于空间自相关模型的西北太平洋日本鲭渔场时空变动研究

赵国庆 吴祖立 崔雪森 樊伟 石永闯 肖戈 唐峰华

赵国庆,吴祖立,崔雪森,等. 基于空间自相关模型的西北太平洋日本鲭渔场时空变动研究[J]. 海洋学报,2022,44(1):22–35 doi: 10.12284/hyxb2022012
引用本文: 赵国庆,吴祖立,崔雪森,等. 基于空间自相关模型的西北太平洋日本鲭渔场时空变动研究[J]. 海洋学报,2022,44(1):22–35 doi: 10.12284/hyxb2022012
Zhao Guoqing,Wu Zuli,Cui Xuesen, et al. Spatial temporal patterns of chub mackerel fishing ground in the Northwest Pacific based on spatial autocorrelation model[J]. Haiyang Xuebao,2022, 44(1):22–35 doi: 10.12284/hyxb2022012
Citation: Zhao Guoqing,Wu Zuli,Cui Xuesen, et al. Spatial temporal patterns of chub mackerel fishing ground in the Northwest Pacific based on spatial autocorrelation model[J]. Haiyang Xuebao,2022, 44(1):22–35 doi: 10.12284/hyxb2022012

基于空间自相关模型的西北太平洋日本鲭渔场时空变动研究

doi: 10.12284/hyxb2022012
基金项目: 国家重点研发计划(2019YFD0901405);上海市自然科学基金(17ZR1439700);中国水产科学研究院东海水产研究所基本科研业务费(2021T04);农业农村部远洋与极地渔业创新重点实验室开放课题(2019HY-XKQ03)
详细信息
    作者简介:

    赵国庆(1990—),男,山东省潍坊市人,研究方向为渔业遥感研究。E-mail:zgq617717@163.com

    通讯作者:

    唐峰华,副研究员,主要从事鱼类生态学和渔业遥感研究。E-mail:f-h-tang@163.com

  • 中图分类号: S932.4

Spatial temporal patterns of chub mackerel fishing ground in the Northwest Pacific based on spatial autocorrelation model

  • 摘要: 日本鲭(Scomber japonicus)是西北太平洋渔业捕捞的主要种类,了解其渔场变动对探究日本鲭种群分布、资源评估、开发利用和管理等意义重大。为获知其渔场的时空变动特征,本研究根据中国2014−2019年西北太平洋公海灯光围网渔业统计资料,运用全局莫兰指数、局部热点分析、重心迁移轨迹模型和标准差椭圆模型对西北太平洋日本鲭渔场时空分布模式、特征和变动趋势进行了研究。结果显示:(1)日本鲭渔获量主要集中在39°~44°N,147°~155°E范围内,地理上分布不均;年间产量先增后降,年间CPUE逐年降低;月间产量先增后降,其中6−10月均维持在较高水平,CPUE逐月增加;捕捞网次核密度显示,核密度高值发生区域与产量高值具有高度一致性;(2)日本鲭年间、月间渔获量均存在空间自相关并呈现显著聚集分布模式,月间空间自相关性比年间强;(3)年间、月间日本鲭渔获量分布的热点区和冷点区均表现出一定空间集聚特征,但是不同年份、月份的热点区和冷点区的分布区域、面积均存在较大差异;(4)日本鲭渔场重心年间移动轨迹呈右转约90°的扁“W”形状,总体上往西北移动;月间变化显示,从4月份开始逐渐向东北移动,8月到达东北端后向西南折返;(5)日本鲭渔场年间、月间变动方向一致,呈西南−东北格局,且方向性、向心力均较强,日本鲭渔场具有较高的聚集性。该研究引进了空间自相关模型及相关地理空间分析方法,为探讨西北太平洋日本鲭渔场变动特征提供了一种新思路。
  • 图  1  西北太平洋公海日本鲭作业海域

    Fig.  1  Fishing area of chub mackerel in the high seas of the Northwest Pacific

    图  2  标准差椭圆基本参数

    Fig.  2  Basic parameters of the standard deviational ellipse

    图  3  西北太平洋公海日本鲭产量和CPUE

    每月的产量为2014−2019年同一月份的叠加值,每月的CPUE利用叠加后的产量和捕捞努力量求得

    Fig.  3  Catch and CPUE of chub mackerel in the high seas of the Northwest Pacific

    The monthly yield was the superposition value of the same month from 2014 to 2019, and the monthly CPUE was obtained by using the superimposed yield and fishing effort

    图  4  2014−2019年西北太平洋公海日本鲭产量分布

    Fig.  4  Catch distribution of chub mackerel in the high seas of the Northwest Pacific from 2014 to 2019

    图  5  2014−2019年西北太平洋公海日本鲭渔获网次核密度

    Fig.  5  The kernel density of fishing haul numbers of chub mackerel in the high seas of the Northwest Pacific from 2014 to 2019

    图  6  西北太平洋日本鲭产量年间热点分析

    Fig.  6  Hotspots of annual catches of chub mackerel in the Northwest Pacific

    图  7  西北太平洋日本鲭产量月间热点分析

    Fig.  7  Hotspots of monthly catches of chub mackerel in the Northwest Pacific

    图  8  西北太平洋日本鲭渔场重心年间(a)和月间(b)变化

    Fig.  8  Interannual variation (a) and monthly variation (b) of fishing ground gravity centers of chub mackerel in the Northwest Pacific

    图  9  西北太平洋日本鲭渔场年间(a)和月间(b)标准差椭圆

    Fig.  9  Annual (a) and monthly (b) standard deviation ellipses of chub mackerel fishing ground in the Northwest Pacific

    表  1  日本鲭产量年间常规统计和全局空间自相关参数

    Tab.  1  Ordinary statistics and global spatial autocorrelation parameters of annual catches of chub mackerel

    年份均值标准差偏态值峰态值变异系数标准差的平方与均值的比值全局莫兰指数Zp
    2014年22.92116.7914.10455.7690.73312.3 0.214 2.2720.023
    2015年21.82518.6458.97224.8460.85415.9290.052 5.6780
    2016年16.8413.2543.42523.8660.78710.4320.091 2.1080.035
    2017年12.96711.8412.74318.8830.91310.8130.101 2.8710.004
    2018年12.49412.2754.66564.5830.98312.0610.082 3.3860
    2019年 8.772 7.7511.3723.990.884 6.8490.42210.5250
    下载: 导出CSV

    表  2  日本鲭产量月间常规统计和全局空间自相关参数

    Tab.  2  Ordinary statistics and global spatial autocorrelation parameters of monthly catches of chub mackerel

    月份均值标准差偏态值峰态值变异系数标准差的平方与均值的比值全局莫兰指数Zp
    4月11.97315.493 7.343 87.1311.29420.0460.34418.2020
    5月11.16112.67 5.29 76.6331.13514.3830.81 22.0150
    6月12.6 12.259 2.444 11.3880.97311.9280.43416.8710
    7月12.32411.068 4.498 68.9630.898 9.94 0.111 6.1650
    8月14.39211.713 2.803 24.0590.8149.5330.49722.2690
    9月15.57513.044 2.039 7.8310.83810.9240.67926.76 0
    10月20.11918.25810.479302.9550.90716.5690.149 4.6740
    11月19.73115.389 2.982 26.5290.7812.0020.254 2.9110
    下载: 导出CSV

    表  3  日本鲭年间、月间产量分布标准差椭圆形状参数

    Tab.  3  Parameters of standard deviational ellipse of annual and monthly catch distributions of chub mackerel

    时间方位角/(°)长轴/(°)短轴/(°)扁率
    年份2014年54.154.51.183.81
    2015年67.622.310.753.10
    2016年60.962.810.923.04
    2017年63.274.350.934.68
    2018年57.362.810.654.31
    2019年52.842.920.55.88
    月份4月47.011.910.892.13
    5月52.312.450.982.50
    6月67.642.190.792.78
    7月63.552.270.82.83
    8月63.942.390.783.06
    9月65.252.990.973.08
    10月65.172.930.823.59
    11月57.122.690.664.06
      注:因为作图时使用经纬度作为度量单位,因此短轴、长轴只起提供距离比例和计算扁率作用。
    下载: 导出CSV
  • [1] Wang Liangming, Ma Shuyang, Liu Yang, et al. Fluctuations in the abundance of chub mackerel in relation to climatic/oceanic regime shifts in the Northwest Pacific Ocean since the 1970s[J]. Journal of Marine Systems, 2021, 218: 103541. doi: 10.1016/j.jmarsys.2021.103541
    [2] Yatsu A, Watanabe T, Ishida M, et al. Environmental effects on recruitment and productivity of Japanese sardine Sardinops melanostictus and chub mackerel Scomber japonicus with recommendations for management[J]. Fisheries Oceanography, 2005, 14(4): 263−278. doi: 10.1111/j.1365-2419.2005.00335.x
    [3] Bae J H, lim S Y. Chemical composition, antiproliferative and antioxidant properties of lipid classes in ordinary and dark muscles from chub mackerel (Scomber japonicus)[J]. Food and Chemical Toxicology, 2012, 50(3/4): 823−828.
    [4] Yukami R, Ohshimo S, Yoda M, et al. Estimation of the spawning grounds of chub mackerel Scomber japonicus and spotted mackerel Scomber australasicus in the East China Sea based on catch statistics and biometric data[J]. Fisheries Science, 2009, 75: 167−174. doi: 10.1007/s12562-008-0015-7
    [5] 范秀梅, 唐峰华, 崔雪森, 等. 基于栖息地指数的西北太平洋日本鲭渔情预报模型构建[J]. 海洋学报, 2020, 42(12): 34−43.

    Fan Xiumei, Tang Fenghua, Cui Xuesen, et al. Habitat suitability index for chub mackerel (Scomber japonicus) in the Northwest Pacific Ocean[J]. Haiyang Xuebao, 2020, 42(12): 34−43.
    [6] 中央水产研究所. 令和2 (2020) 年度マサバ太平洋系群の資源評価[R]. 东京: 中央水产研究所, 2021: 11-15.

    Central Fisheries Research Institute. Resource evaluation of the masba Pacific Group in the year 2020[R]. Japan: Central Fisheries Research Institute, 2021: 11.
    [7] Shiraishi T, Ketkar S D, Katoh Y, et al. Spawning frequency of the Tsushima Current subpopulation of chub mackerel Scomber japonicus off Kyushu, Japan[J]. Fisheries Science, 2009, 75(3): 649−655. doi: 10.1007/s12562-009-0094-0
    [8] 董秀强, 李灵智, 黄洪亮, 等. 西北太平洋公海2种灯光渔业渔获物组成的比较[J]. 海洋渔业, 2018, 40(4): 481−488. doi: 10.3969/j.issn.1004-2490.2018.04.011

    Dong Xiuqiang, Li Lingzhi, Huang Hongliang, et al. Comparison of two catches of light-fishing in the Northwest Pacific[J]. Marine Fisheries, 2018, 40(4): 481−488. doi: 10.3969/j.issn.1004-2490.2018.04.011
    [9] 戴澍蔚, 唐峰华, 樊伟, 等. 北太平洋公海日本鲭资源分布及其渔场环境特征[J]. 海洋渔业, 2017, 39(4): 372−382. doi: 10.3969/j.issn.1004-2490.2017.04.002

    Dai Shuwei, Tang Fenghua, Fan Wei, et al. Distribution of resource and environment characteristics of fishing ground of Scomber japonicas in the North Pacific high seas[J]. Marine Fisheries, 2017, 39(4): 372−382. doi: 10.3969/j.issn.1004-2490.2017.04.002
    [10] 徐博, 张衡, 唐峰华, 等. 基于GAM的北太平洋公海围网主要渔获种类渔场重心与环境因子的关系分析[J]. 南方水产科学, 2020, 16(5): 60−70. doi: 10.12131/20200006

    Xu Bo, Zhang Heng, Tang Fenghua, et al. Relationship between center of gravity and environmental factors of main catches of purse seine fisheries in North Pacific high seas based on GAM[J]. South China Fisheries Science, 2020, 16(5): 60−70. doi: 10.12131/20200006
    [11] 王良明, 李渊, 张然, 等. 西北太平洋日本鲭资源丰度分布与表温和水温垂直结构的关系[J]. 中国海洋大学学报, 2019, 49(11): 29−38.

    Wang Liangming, Li Yuan, Zhang Ran, et al. Relationship between the resource distribution of Scomber japonicus and seawater temperature vertical structure of northwestern Pacific Ocean[J]. Periodical of Ocean University of China, 2019, 49(11): 29−38.
    [12] 吴玉鸣, 徐建华. 中国区域经济增长集聚的空间统计分析[J]. 地理科学, 2004, 24(6): 654−659. doi: 10.3969/j.issn.1000-0690.2004.06.003

    Wu Yuming, Xu Jianhua. A spatial analysis on China’s regional economic growth clustering[J]. Scientia Geographica Sinica, 2004, 24(6): 654−659. doi: 10.3969/j.issn.1000-0690.2004.06.003
    [13] Mollalo A, Rivera K M, Vahabi N. Spatial statistical analysis of pre-existing mortalities of 20 diseases with COVID-19 mortalities in the continental United States[J]. Sustainable Cities and Society, 2021, 67: 102738. doi: 10.1016/j.scs.2021.102738
    [14] 谢花林. 基于景观结构和空间统计学的区域生态风险分析[J]. 生态学报, 2008, 28(10): 5020−5026. doi: 10.3321/j.issn:1000-0933.2008.10.048

    Xie Hualin. Regional eco-risk analysis of based on landscape structure and spatial statistics[J]. Acta Ecologica Sinica, 2008, 28(10): 5020−5026. doi: 10.3321/j.issn:1000-0933.2008.10.048
    [15] Santa Cruz F, Ernst B, Arata J A, et al. Spatial and temporal dynamics of the Antarctic krill fishery in fishing hotspots in the Bransfield Strait and South Shetland Islands[J]. Fisheries Research, 2018, 208: 157−166. doi: 10.1016/j.fishres.2018.07.020
    [16] 原作辉, 杨东海, 樊伟, 等. 基于卫星AIS的中西太平洋金枪鱼延绳钓渔场分布研究[J]. 海洋渔业, 2018, 40(6): 649−659. doi: 10.3969/j.issn.1004-2490.2018.06.002

    Yuan Zuohui, Yang Donghai, Fan Wei, et al. On fishing grounds distribution of tuna longline based on satellite automatic identification system in the Western and Central Pacific[J]. Marine Fisheries, 2018, 40(6): 649−659. doi: 10.3969/j.issn.1004-2490.2018.06.002
    [17] 蔡研聪, 黄梓荣, 李佳俊, 等. 南海北部近海新记录种——苏门答腊金线鱼资源分布特征[J]. 南方水产科学, 2020, 16(6): 1−11. doi: 10.12131/20200091

    Cai Yancong, Huang Zirong, Li Jiajun, et al. Stock distribution of a new record species Nemipterus mesoprion in offshore northern South China Sea[J]. South China Fisheries Science, 2020, 16(6): 1−11. doi: 10.12131/20200091
    [18] Krafft B A, Skaret G, Knutsen T. An Antarctic krill (Euphausia superba) hotspot: population characteristics, abundance and vertical structure explored from a krill fishing vessel[J]. Polar Biology, 2015, 38(10): 1687−1700. doi: 10.1007/s00300-015-1735-7
    [19] Pennino M G, Bellido J M, Conesa D, et al. The analysis of convergence in ecological indicators: An application to the Mediterranean fisheries[J]. Ecological Indicators, 2017, 78: 449−457. doi: 10.1016/j.ecolind.2017.03.041
    [20] 任平, 吴涛, 周介铭. 基于GIS和空间自相关模型的耕地空间分布格局及变化特征分析——以成都市龙泉驿区为例[J]. 中国生态农业学报, 2016, 24(3): 325−334.

    Ren Ping, Wu Tao, Zhou Jieming. Analysis of spatial distribution pattern and evolutionary characteristics of cultivated lands based on spatial autocorrelation model and GIS platform—A case study of Longquanyi District, Chengdu, China[J]. Chinese Journal of Eco-Agriculture, 2016, 24(3): 325−334.
    [21] Ping J L, Green C J, Zartman R E, et al. Exploring spatial dependence of cotton yield using global and local autocorrelation statistics[J]. Field Crops Research, 2004, 89(2/3): 219−236.
    [22] Getis A, Ord J K. The analysis of spatial association by use of distance statistics[J]. Geographical Analysis, 1992, 24(3): 189−206.
    [23] Anselin L. Local indicators of spatial association—LISA[J]. Geographical Analysis, 2010, 27(2): 93−115. doi: 10.1111/j.1538-4632.1995.tb00338.x
    [24] 陈明发, 刘帆, 赵耀龙, 等. 1987−2017年粤港澳大湾区城市群的不透水地表扩张与梯度演化[J]. 地球信息科学学报, 2021, 23(3): 443−455. doi: 10.12082/dqxxkx.2021.200195

    Chen Mingfa, Liu Fan, Zhao Yaolong, et al. The Expansion and gradient evolution of impervious surface within the Guangdong-Hong Kong-Macao Greater Bay area from 1987 to 2017[J]. Journal of Geo-information Science, 2021, 23(3): 443−455. doi: 10.12082/dqxxkx.2021.200195
    [25] Lefever D W. Measuring geographic concentration by means of the standard deviational ellipse[J]. American Journal of Sociology, 1926, 32(1): 88−94. doi: 10.1086/214027
    [26] Suda M, Watanabe C, Akamine T. Two-species population dynamics model for Japanese sardine Sardinops melanostictus and chub mackerel Scomber japonicus off the Pacific coast of Japan[J]. Fisheries Research, 2008, 94(1): 18−25. doi: 10.1016/j.fishres.2008.06.012
    [27] Ichinokawa M, Okamura H, Watanabe C, et al. Effective time closures: quantifying the conservation benefits of input control for the Pacific chub mackerel fishery[J]. Ecological Applications, 2015, 25(6): 1566−1584. doi: 10.1890/14-1216.1
    [28] 崔国辰, 朱文斌, 戴乾, 等. 西北太平洋鲐鱼渔场的时空分布及其与海表温和叶绿素浓度的关系研究[J]. 海洋开发与管理, 2021, 38(8): 5 .

    Cui Guochen, Zhu Wenbin, Dai Qian, et al. Spatial and temporal distribution of chub mackerel in the Northwest Pacific and its relationship with sea surface temperature and chlorophyll concentration[J]. Ocean Development and Management, 2021, 38(8): 5.
    [29] 唐峰华, 戴澍蔚, 樊伟, 等. 西北太平洋公海日本鲭(Scomber japonicus)胃含物及其摄食等级研究[J]. 中国农业科技导报, 2020, 22(1): 138−148.

    Tang Fenghua, Dai Shuwei, Fan Wei, et al. Study on stomach composition and feeding level of chub mackerel in the Northwest Pacific[J]. Journal of Agricultural Science and Technology, 2020, 22(1): 138−148.
    [30] 庄之栋, 马超, 刘勇, 等. 北太平洋公海秋季鲐鱼生物学特性的初步研究[J]. 海洋湖沼通报, 2018(6): 125−131.

    Zhuang Zhidong, Ma Chao, Liu Yong, et al. A preliminary study on biological characteristics of Scomber japonicus in the North Pacific Ocean in autumn[J]. Transactions of Oceanology and Limnology, 2018(6): 125−131.
    [31] 薛嘉伦, 樊伟, 唐峰华, 等. 基于最大熵模型预测西北太平洋公海鲐潜在栖息地分布[J]. 南方水产科学, 2018, 14(1): 92−98. doi: 10.3969/j.issn.20950780.2018.01.012

    Xue Jialun, Fan Wei, Tang Fenghua, et al. Analysis of potential habitat distribution of Scomber japonicus in Northwest Pacific Ocean using maximum entropy model[J]. South China Fisheries Science, 2018, 14(1): 92−98. doi: 10.3969/j.issn.20950780.2018.01.012
    [32] Nicol S, Foster J, Kawaguchi S. The fishery for Antarctic krill—recent developments[J]. Fish and Fisheries, 2012, 13(1): 30−40. doi: 10.1111/j.1467-2979.2011.00406.x
    [33] 冯永玖, 杨铭霞, 陈新军. 基于Voronoi图与空间自相关的西北太平洋柔鱼资源空间聚集特征分析[J]. 海洋学报, 2014, 36(12): 74−84.

    Feng Yongjiu, Yang Mingxia, Chen Xinjun. Aanlyzing spatial aggregation of Ommastrephes bartramii in the Northwest Pacific Ocean based on Voronoi diagram and spatial autocorrelation[J]. Haiyang Xuebao, 2014, 36(12): 74−84.
    [34] Ord K. Estimation methods for models of spatial interaction[J]. Journal of the American Statistical Association, 1975, 70(349): 120−126. doi: 10.1080/01621459.1975.10480272
    [35] Zhang Xinfeng, Tang Danling, Li Zizhen, et al. Analysis of the spatio-temporal distribution of chlorophyll a in the eastern Indian Ocean near the time of the 2004 South Asian tsunami[J]. International Journal of Remote Sensing, 2010, 31(17/18): 4579−4593. doi: 10.1080/01431161.2010.485141
    [36] 刘禹希, 王学锋, 吕少梁, 等. 南海北部海域大眼鲷空间自相关性[J]. 水产学报, 2021, 45(8): 13.

    Liu Yuxi, Wang Xuefeng, Lü Shaoliang, et al. Spatial autocorrelation of Priacanthus spp. resources in the northern South China Sea[J]. Journal of Fisheries of China, 2021, 45(8):13.
    [37] 都煜, 徐宾铎, 薛莹, 等. 海州湾日本枪乌贼和短蛸空间结构的季节变化[J]. 水产学报, 2017, 41(12): 1888−1895.

    Du Yu, Xu Binduo, Xue Ying, et al. Seasonal variations of spatial structure of Japanese squid (Loligo japonica) and octopus (Octopus ochellatus) in Haizhou Bay[J]. Journal of Fisheries of China, 2017, 41(12): 1888−1895.
    [38] 杨晓明, 戴小杰, 田思泉, 等. 中西太平洋鲣鱼围网渔业资源的热点分析和空间异质性[J]. 生态学报, 2014, 34(13): 3771−3778.

    Yang Xiaoming, Dai Xiaojie, Tian Siquan, et al. Hot spot analysis and spatial heterogeneity of skipjack tuna (Katsuwonus pelamis) purse seine resources in the western and central Pacific Ocean[J]. Acta Ecologica Sinica, 2014, 34(13): 3771−3778.
    [39] 赵斌, 蔡庆华. 地统计学分析方法在水生态系统研究中的应用[J]. 水生生物学报, 2000, 24(5): 514−520. doi: 10.3321/j.issn:1000-3207.2000.05.019

    Zhao Bin, Cai Qinghua. An application of geostatstical analysis in freshwater ecosystem[J]. Acta Hydrobiologica Sinica, 2000, 24(5): 514−520. doi: 10.3321/j.issn:1000-3207.2000.05.019
    [40] 袁兴伟, 刘尊雷, 金艳, 等. 基于空间自相关的东海带鱼聚集特征年代际变化[J]. 应用生态学报, 2017, 28(10): 3409−3416.

    Yuan Xingwei, Liu Zunlei, Jin Yan, et al. Inter-decadal variation of spatial aggregation of Trichiurus japonicus in East China Sea based on spatial autocorrelation analysis[J]. Chinese Journal of Applied Ecology, 2017, 28(10): 3409−3416.
    [41] 王文宇, 邵全琴, 薛允传, 等. 西北太平洋柔鱼资源与海洋环境的GIS空间分析[J]. 地球信息科学, 2003(1): 39−44.

    Wang Wenyu, Shao Quanqin, Xue Yunchuan, et al. On the relationship between on the resources of Ommastrephes Bartramia and marine environment in the Northwest Pacific Ocean based on GIS[J]. Geo-information Science, 2003(1): 39−44.
    [42] Kang S, Lee J B, Hollowed A, et al. The impact of climate changes on the distribution and abundance of mackerels in the Northwestern Pacific[J]. Proceedings of the Korean Society of Industrial Applied Mathematics, 2010, 5(S3/4): 37−37.
    [43] Cheung W W, Watson R, Pauly D. Signature of ocean warming in global fisheries catch[J]. Nature, 2013, 497(7449): 365−368. doi: 10.1038/nature12156
    [44] Watanabe C. Effects of density-dependence and sea surface temperature on interannual variation in length-at-age of chub mackerel (Scomber japonicus) in the Kuroshio-Oyashio area during 1970−1997[J]. Fishery Bulletin, 2004, 102(1): 196−206.
    [45] Watanabe C, Yatsu A. Long-term changes in maturity at age of chub mackerel (Scomber japonicus) in relation to population declines in the waters off northeastern Japan[J]. Fisheries Research, 2006, 78(2/3): 323−332. doi: 10.1016/j.fishres.2006.01.001
    [46] 陈新军. 渔业资源与渔场学[M]. 北京: 海洋出版社, 2004: 145-157.

    Chen Xinjun. Fisheries Resources and Fishing Grounds[M]. Beijing: China Ocean Press, 2004: 145−157.
    [47] 陈新军, 许柳雄. 北太平洋150°E~165°E海域柔鱼渔场与表温及水温垂直结构的关系[J]. 海洋湖沼通报, 2004(2): 36−44. doi: 10.3969/j.issn.1003-6482.2004.02.006

    Chen Xinjun, Xu Liuxiong. Analysis of relationship between fishing ground of Ommastrephe bartrami and surface water temperature and its vertical distribution from 150°E to 165°E in the Northwestern Pacific[J]. Transactions of Oceanology and Limnology, 2004(2): 36−44. doi: 10.3969/j.issn.1003-6482.2004.02.006
    [48] 赵璐, 赵作权. 基于特征椭圆的中国经济空间分异研究[J]. 地理科学, 2014, 34(8): 979−986.

    Zhao Lu, Zhao Zuoquan. Projecting the spatial variation of economic based on the specific ellipses in China[J]. Scientia Geographica Sinica, 2014, 34(8): 979−986.
    [49] Guan L S, Shan X J, Jin X S, et al. Evaluating spatio-temporal dynamics of multiple fisheries-targeted populations simultaneously: A case study of the Bohai Sea ecosystem in China[J]. Ecological Modelling, 2020, 422: 1−10.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  335
  • HTML全文浏览量:  144
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-25
  • 修回日期:  2021-08-27
  • 网络出版日期:  2021-09-10
  • 刊出日期:  2022-01-14

目录

    /

    返回文章
    返回