留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

东海盆地X凹陷Y大气田的天然气成因、成藏模式及勘探意义

张迎朝 胡森清 陈忠云 蔡华 蒋一鸣 刁慧 王超

张迎朝,胡森清,陈忠云,等. 东海盆地X凹陷Y大气田的天然气成因、成藏模式及勘探意义[J]. 海洋学报,2022,44(3):1–11 doi: 10.12284/hyxb2022011
引用本文: 张迎朝,胡森清,陈忠云,等. 东海盆地X凹陷Y大气田的天然气成因、成藏模式及勘探意义[J]. 海洋学报,2022,44(3):1–11 doi: 10.12284/hyxb2022011
Zhang Yingzhao,Hu Senqing,Cai Hua, et al. The genesis, accumulation model and exploration significance of Y giant gas field in X Sag, East China Sea Basin[J]. Haiyang Xuebao,2022, 44(3):1–11 doi: 10.12284/hyxb2022011
Citation: Zhang Yingzhao,Hu Senqing,Cai Hua, et al. The genesis, accumulation model and exploration significance of Y giant gas field in X Sag, East China Sea Basin[J]. Haiyang Xuebao,2022, 44(3):1–11 doi: 10.12284/hyxb2022011

东海盆地X凹陷Y大气田的天然气成因、成藏模式及勘探意义

doi: 10.12284/hyxb2022011
基金项目: “十三五”国家科技重大专项“东海盆地低渗-致密天然气勘探开发技术”(2016ZX05027)
详细信息
    作者简介:

    张迎朝(1971—),男,广东省普宁市人,教授级高级工程师,主要从事海洋油气勘探研究。E-mail:zhangyingzh@cnooc.com.cn

The genesis, accumulation model and exploration significance of Y giant gas field in X Sag, East China Sea Basin

  • 摘要: 本文旨在厘清东海盆地X凹陷Y大气田天然气成因,建立成藏模式,以指导下步勘探部署。本文从天然气组分、烷烃气碳同位素、轻烃、凝析油生物标志化合物等分析入手,系统研究了油气成因类型及来源,并结合构造演化史、生烃史分析,建立了Y大气田成藏模式,提出了大中型气田的勘探方向。主要认识如下:(1)天然气组分碳同位素、轻烃和埋藏史分析表明,Y大气田天然气为凹中始新统平湖组烃源岩在龙井运动期(距今13 Ma)生成的高成熟煤型气;(2)凝析油姥鲛烷/植烷、规则甾烷等特征,反映了凹中区平湖组烃源岩发育于弱氧化−弱还原潮坪、潟湖沉积环境,生烃母质中存在一定数量的低等水生生物;(3)Y大气田具有“凹中区平湖组烃源岩、花港组大型水道砂储集体、挤压构造作用”时空耦合的成藏模式,明确了凹中挤压背斜带是X凹陷大中型气田勘探的主攻方向。
  • 图  1  东海盆地X凹陷构造区划

    Fig.  1  Tectonic partition of X sag in the East China Sea Basin

    图  2  X凹陷Y大气田轻烃色谱特征

    Fig.  2  Chromatographic characteristics of light hydrocarbons of Y giant gas field in X Sag

    图  3  X凹陷烃源岩、凝析油饱和烃甾烷、萜烷特征

    Fig.  3  Characteristics of steranes and terpanes of source rocks and condensate oils in X sag

    图  4  X凹陷烃源岩、凝析油主要生标参数指纹对比

    Fig.  4  Comparison of main biomarker parameters of source rocks and condensate oils in X sag

    图  5  X凹陷Y大气田区实测Ro与深度关系

    Fig.  5  The relationship between measured Ro and depth of Y giant gas field in X Sag

    图  6  X 凹陷 Y 大气田区地层埋藏史

    Fig.  6  The burial history of Y giant gas field in X Sag

    图  7  东海盆地X凹陷“烃源岩、储层、构造作用”耦合的大中型天然气成藏模式

    Fig.  7  Large and medium-sized natural gas accumulation model coupled with "source rock, reservoir and tectonism" in X Sag, East China Sea Basin

    图  8  东海盆地 X 凹陷西部斜坡带和凹中挤压背斜带平湖组烃源岩品质对比

    Fig.  8  Source rock quality of Pinghu formation in west slope compared tocentral structural belt of X Sag,East China Sea Basin

    表  1  东海盆地X凹陷Y大气田天然气组分与烷烃气碳同位素特征

    Tab.  1  Natural gas composition and carbon isotope characteristics of the Y giant gas field of X sag in the East China Sea Basin

    区带 井号 井段/m 测试层号 地层 天然气组分/% 干燥系数 碳同位素δ13C/‰
    C1 C2-5 N2 CO2 C1/C1-C5 C1 C2 C3 C4
    X凹陷
    凹中背
    斜带
    Y1 3769~3799 DST1 花港獅H3b
    下部
    92.98 3.15 1.61 2.15 0.967 −30.9 −24 −24 −23.1
    Y1 3709~3739 DST2 花港胞H3b
    中上部
    93.49 3.15 1.19 2.04 0.967 −29.8 −23.8 −23.6 −19.1
    Y1 3177~3181, 3186~3199 DST4 花港组H1 94.45 3.00 1.47 0.93 0.969 −29.9 −23.5 −22.7 −19.5
    Y2 4240~4352 DST1 花港组H5 87.12 5.96 1.45 5.36 0.936 −30.4 −25.3 −23.3 −23.4
    Y2 3673~3700 DST2 花港组H3a 92.88 3.16 1.25 2.49 0.967 −27.7 −23.3 −22.7 −22.8
    下载: 导出CSV

    表  2  X凹陷Y大气田和北部湾等盆地天然气C7轻烃组成

    Tab.  2  Compositions of C7 light hydrocarbon serial of natural gas in Y giant gas field of X Sag and Beibu Gulf basin

    盆地井名地层天然气C7轻烃组成甲苯/
    甲基环己烷
    (MCH)/%
    正庚烷
    (nC7)/%
    二甲基环戊烷
    (∑DMCP)/%
    甲基环己烷
    百分数/%
    东海Y1渐新统花
    港组
    71.9018.309.8071.902.7
    Y170.4918.0611.4670.492.08
    Y269.9018.7711.3369.902.77
    南海北部湾W1始新统流
    沙港组
    33.325.940.733.3*
    W2渐新统涠
    洲组
    34.830.434.834.8*
    W335.7132.1432.1435.71*
    鄂尔多斯
    211
    下二叠统
    山西组
    70.416.812.870.4*
    四川须二
    Z2
    三叠系须
    家河组
    73151273*
      注∶甲基环己烷百分数=MCH/(MCH+nC7+∑DMCP)×100%,*表示甲苯/苯比值未知
    下载: 导出CSV

    表  3  东海盆地X凹陷烃源岩、凝析油饱和烃色谱−质谱参数表

    Tab.  3  Source rocks and condensate chromatographic-Mass spectrometry parameter of X Sag in the East China Sea Basin

    区带井号井段/m样品
    类型
    地层Pr/
    Ph
    规则甾烷/
    C30藿烷
    甾烷C27%甾烷C28%甾烷C29%甾烷C27/C29Ts/
    Tm
    奥利烷/
    C30藿烷
    伽马蜡烷/
    C30藿烷
    西部斜坡带Y19-6-34 359~4 382凝析油平湖组
    中段
    70.9721.0623.2055.730.3890.260.15/
    Y25-3-13 720泥岩平湖组
    中段
    6.350.4020.376.3373.290.280.160.12/
    凹中挤压背斜带Y13 760~3 799凝析油花港组
    上段
    3.082.3932.3226.7940.890.790.56/0.25
    Y31-24 442.33~
    4 442.93
    泥岩平湖组
    上段
    2.181.0240.4525.0734.481.171.100.100.15
    下载: 导出CSV

    表  4  Y大气田天然气成熟度与等效烃源岩埋深

    Tab.  4  The maturity of natural gas and equivalent burial depth of source rock

    井号甲烷碳同位素δ13C1/‰*天然气成熟度Ro/%**烃源岩埋深
    Z/m
    Y1−30.91.705 344
    Y1−29.81.775 537
    Y1−29.91.765 520
    Y2−30.41.735 431
    Y3−27.71.925 927
      注∶*δ13C1=58.67×log(Ro)−44.37[29],**Z=3453.7×Ro^0.8256
    下载: 导出CSV
  • [1] Engebretson D C, Cox A, Gordon R G. Relative motions between oceanic and continental plates in the Pacific Basin[J]. Geological Society of America, 1985, 206(9): 1−60.
    [2] Northrup C J, Royden L H, Burchfiel B C. Motion of the Pacific plate relative to Eurasia and its potential relation to Cenozoic extension along the eastern margin of Eurasia[J]. Geology, 1995, 23(8): 719−722. doi: 10.1130/0091-7613(1995)023<0719:MOTPPR>2.3.CO;2
    [3] 董树文, 张岳桥, 陈宣华, 等. 晚侏罗世东亚多向汇聚构造体系的形成与变形特征[J]. 地球学报, 2008, 29(3): 306−317. doi: 10.3321/j.issn:1006-3021.2008.03.005

    Dong Shuwen, Zhang Yueqiao, Chen Xuanhua, et al. The formation and deformational characteristics of East Asia multi-direction convergent tectonic system in late Jurassic[J]. Acta Geoscientica Sinica, 2008, 29(3): 306−317. doi: 10.3321/j.issn:1006-3021.2008.03.005
    [4] 张建培, 张田, 唐贤君. 东海陆架盆地类型及其形成的动力学环境[J]. 地质学报, 2014, 88(11): 2033−2043.

    Zhang Jianpei, Zhang Tian, Tang Xianjun. Basin type and dynamic environment in the East China Sea shelf basin[J]. Acta Geologica Sinica, 2014, 88(11): 2033−2043.
    [5] 杨传胜, 杨长清, 杨艳秋, 等. 东海陆架盆地中生界残留分布特征及其大地构造意义[J]. 中国海洋大学学报, 2017, 47(11): 86−95.

    Yang Chuansheng, Yang Changqing, Yang Yanqiu, et al. Characteristics of mesozoic strata in the East China Sea Shelf Basin and their geotectonic implications[J]. Periodical of Ocean University of China, 2017, 47(11): 86−95.
    [6] 李三忠, 索艳慧, 李玺瑶, 等. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造−岩浆响应[J]. 科学通报, 2018, 63(16): 1550−1593. doi: 10.1360/N972017-01113

    Li Sanzhong, Suo Yanhui, Li Xiyao, et al. Mesozoic plate subduction in West Pacific and tectono-magmatic response in the East Asian ocean-continent connection zone[J]. Chinese Science Bulletin, 2018, 63(16): 1550−1593. doi: 10.1360/N972017-01113
    [7] Zhu Weilin, Zhong Kai, Fu Xiaowei, et al. The formation and evolution of the East China Sea Shelf Basin: A new view[J]. Earth-Science Reviews, 2019, 190: 89−111. doi: 10.1016/j.earscirev.2018.12.009
    [8] 杨长清, 杨传胜, 孙晶, 等. 东海陆架盆地南部中生代演化与动力学转换过程[J]. 吉林大学学报 (地球科学版), 2019, 49(1): 139−153.

    Yang Changqing, Yang Chuansheng, Sun Jing, et al. Mesozoic evolution and dynamics transition in Southern Shelf Basin of the East China Sea[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(1): 139−153.
    [9] 周心怀. 西湖凹陷地质认识创新与油气勘探领域突破[J]. 中国海上油气, 2020, 32(1): 1−12.

    Zhou Xinhuai. Geological understanding and innovation in Xihu Sag and breakthroughs in oil and gas exploration[J]. China Offshore Oil and Gas, 2020, 32(1): 1−12.
    [10] 李晓龙, 许长海, 高顺莉, 等. 东海晚中生代岩浆弧与陆缘汇聚作用: 碎屑锆石U-Pb年代约束[J]. 地质学报, 2020, 94(2): 480−490. doi: 10.3969/j.issn.0001-5717.2020.02.009

    Li Xiaolong, Xu Changhai, Gao Shunli, et al. Late Mesozoic magmatic arc of continental margin: Constraints from detrital zircon U-Pb data, East China Sea[J]. Acta Geologica Sinica, 2020, 94(2): 480−490. doi: 10.3969/j.issn.0001-5717.2020.02.009
    [11] 刘金水, 许怀智, 蒋一鸣, 等. 东海盆地中、新生代盆架结构与构造演化[J]. 地质学报, 2020, 94(3): 675−691. doi: 10.3969/j.issn.0001-5717.2020.03.001

    Liu Jinshui, Xu Huaizhi, Jiang Yiming, et al. Mesozoic and Cenozoic basin structure and tectonic evolution in the East China sea Basin[J]. Acta Geologica Sinica, 2020, 94(3): 675−691. doi: 10.3969/j.issn.0001-5717.2020.03.001
    [12] 武法东, 陆永潮, 陈平, 等. 东海西湖凹陷渐新统花港组海绿石的发现及其意义[J]. 沉积学报, 1997, 15(3): 160−163.

    Wu Fadong, Lu Yongchao, Chen Ping, et al. The discovery and significance of glauconites in the Huagang formation of the Oligocene, Xihu Depression, East China Sea[J]. Acta Sedimentologica Sinica, 1997, 15(3): 160−163.
    [13] 戴金星, 邹才能, 张水昌, 等. 无机成因和有机成因烷烃气的鉴别[J]. 中国科学 D辑:地球科学, 2008, 51(12): 1737−1749. doi: 10.1007/s11430-008-0133-1

    Dai Jinxing, Zou Caineng, Zhang Shuichang, et al. Discrimination of abiogenic and biogenic alkane gases[J]. Science in China Series D: Earth Sciences, 2008, 51(12): 1737−1749. doi: 10.1007/s11430-008-0133-1
    [14] 沈平, 徐永昌, 王先彬, 等. 气源岩和天然气地球化学特征及成气机理研究[M]. 兰州: 甘肃科学技术出版社, 1991: 39−122.

    Shen Ping, Xu Yongchang, Wang Xianbin, et al. Geochemical Characteristics of Source Rocks and Natural Gas and Gas Generating Mechanism[M]. Lanzhou: Gansu Science and Technology Press, 1991: 39−122.
    [15] 徐永昌. 天然气成因理论及应用[M]. 北京: 科学出版社, 1994: 97−1016.

    Xu Yongchang. Theory of Natural Gas Genesis and Its Application[M]. Beijing: Science Press, 1994: 97−1016.
    [16] 徐永昌. 天然气中的幔源稀有气体[J]. 地学前缘, 1996, 3(3/4): 63−71.

    Xu Yongchang. The mantle noble gas of natural gases[J]. Earth Science Frontiers, 1996, 3(3/4): 63−71.
    [17] Jenden P D, Hilton D R, Kaplan I R, et al. Abiogenic hydrocarbons and mantle helium in oil and gas fields[M]//Howell D G. The Future of Energy Gases. Washington, DC: U. S. Geological Survey Professional Paper, 1993: 31−56.
    [18] 戴金星. 中国含油气盆地的无机成因气及其气藏[J]. 天然气工业, 1995, 15(3): 22−27.

    Dai Jinxing. Abiogenic gas in oil-gas bearing basins in China and its reservoirs[J]. Natural Gas Industry, 1995, 15(3): 22−27.
    [19] 戴金星, 石昕, 卫延召. 无机成因油气论和无机成因的气田(藏)概略[J]. 石油学报, 2001, 22(6): 5−10. doi: 10.3321/j.issn:0253-2697.2001.06.002

    Dai Jinxing, Shi Xin, Wei Yanzhao. Summary of the abiogenic origin theory and the abiogenic gas pools (fields)[J]. Acta Petrolei Sinica, 2001, 22(6): 5−10. doi: 10.3321/j.issn:0253-2697.2001.06.002
    [20] 董伟良, 黄保家. 南海莺−琼盆地煤型气的鉴别标志及气源判识[J]. 天然气工业, 2000, 20(1): 23−27. doi: 10.3321/j.issn:1000-0976.2000.01.006

    Dong Weiliang, Huang Baojia. Identification marks and source discrimination of the coal-type gas in YGH and QDN basins of South China Sea[J]. Natural Gas Industry, 2000, 20(1): 23−27. doi: 10.3321/j.issn:1000-0976.2000.01.006
    [21] 何家雄, 陈伟煌, 李明兴. 莺−琼盆地天然气成因类型及气源剖析[J]. 中国海上油气(地质), 2000, 14(6): 398−405.

    He Jiaxiong, Chen Weihuang, Li Mingxing. Genetic types of natural gas and source rock in Ying-Qiong Basin[J]. China Offshore Oil and Gas (Geology), 2000, 14(6): 398−405.
    [22] 朱俊章, 施和生, 庞雄, 等. 白云凹陷天然气生成与大中型气田形成关系[J]. 天然气地球科学, 2012, 23(2): 213−221.

    Zhu Junzhang, Shi Hesheng, Pang Xiong, et al. Discussion on natural gas generation and giant-medium size gas field formation in Baiyun Sag[J]. Natural Gas Geoscience, 2012, 23(2): 213−221.
    [23] 庄新兵, 邹华耀, 李楠, 等. 秦南地区天然气成因与油气勘探潜力分析[J]. 吉林大学学报(地球科学版), 2011, 41(3): 680−688.

    Zhuang Xinbing, Zou Huayao, Li Nan, et al. Origin of natural gas and exploration potential of hydrocarbon, Qinnan Area[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(3): 680−688.
    [24] Schoell M. Genetic characterization of natural gases[J]. AAPG Bulletin, 1983, 67(12): 2225−2238.
    [25] 杨柳. 中国海域新生代聚煤规律与控煤模式[D]. 北京: 中国矿业大学, 2017.

    Yang Liu. Cenozoic coal accumulation regularity and controlling pattern in China Offshore[D]. Beijing: China University of Mining and Technology, 2017.
    [26] Galimov E M. Sources and mechanisms of formation of gaseous hydrocarbons in sedimentary rocks[J]. Chemical Geology, 1988, 71(1/3): 77−95.
    [27] 胡惕麟, 戈葆雄, 张义纲, 等. 源岩吸附烃和天然气轻烃指纹参数的开发和应用[J]. 石油实验地质, 1990, 12(4): 375−394,450. doi: 10.11781/sysydz199004375

    Hu Tilin, Ge Baoxiong, Zhang Yigang, et al. The development and application of fingerprint parameters for hydrocarbons absorbed by source rocks and light hydrocarbons in natural gas[J]. Experimental Petroleum Geology, 1990, 12(4): 375−394,450. doi: 10.11781/sysydz199004375
    [28] 戴金星. 利用轻烃鉴别煤成气和油型气[J]. 石油勘探与开发, 1993, 20(5): 26−32.

    Dai Jinxing. Identification of coal formed gas and oil type gas by light hydrocarbons[J]. Petroleum Exploration and Development, 1993, 20(5): 26−32.
    [29] 程熊, 侯读杰, 赵喆, 等. 西湖凹陷天然气成因及来源分析[J]. 中国海上油气, 2019, 31(3): 50−60.

    Cheng Xiong, Hou Dujie, Zhao Zhe, et al. Analysis on the genesis and source of natural gas in Xihu Sag, East China Sea Basin[J]. China Offshore Oil and Gas, 2019, 31(3): 50−60.
    [30] 张迎朝, 徐新德, 王立锋, 等. 南海北部超压低渗气藏成藏过程与成藏模式——以莺歌海盆地XF区XF13-1超压气田为例[J]. 天然气地球科学, 2015, 26(9): 1679−1688.

    Zhang Yingzhao, Xu Xinde, Wang Lifeng, et al. The accumulation process and model of overpressured low permeability gas pool in the North of South China Sea: A case study of XF13-1 overpressured gas field in XF Area of the Yinggehai Basin[J]. Natural Gas Geosciences, 2015, 26(9): 1679−1688.
    [31] 张迎朝, 徐新德, 甘军, 等. 琼东南盆地深水区L18气田上新统地层圈闭气田形成条件及成藏模式[J]. 海洋学报, 2019, 41(3): 120−132.

    Zhang Yingzhao, Xu Xinde, Gan Jun, et al. Formation condition and accumulation of Pliocene strata-trapped gas field L18 in the deepwater area of the Qiongdongnan Basin[J]. Haiyang Xuebao, 2019, 41(3): 120−132.
    [32] 夏青松, 黄成刚, 陆江. 沉积盆地中油气充注与储集层成岩作用的响应关系[J]. 地球科学与环境学报, 2019, 41(2): 185−196. doi: 10.3969/j.issn.1672-6561.2019.02.005

    Xia Qingsong, Huang Chenggang, Lu Jiang. Response relationship between hydrocarbon charging and diagenesis of reservoirs in sedimentary basin[J]. Journal of Earth Sciences and Environment, 2019, 41(2): 185−196. doi: 10.3969/j.issn.1672-6561.2019.02.005
    [33] 纪友亮, 高崇龙, 刘玉瑞, 等. 高邮凹陷阜一段油气充注对储层物性演化的影响[J]. 同济大学学报(自然科学版), 2015, 43(1): 133−139.

    Ji Youliang, Gao Chonglong, Liu Yurui, et al. Influence of hydrocarbon charging to the reservoir property in 1st member of funning formation in Gaoyou Depression[J]. Journal of Tongji University (Natural Science), 2015, 43(1): 133−139.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  31
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-19
  • 修回日期:  2021-06-05

目录

    /

    返回文章
    返回