留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子迁移谱现场观测渤海和北黄海二甲基硫的研究

彭丽英 郭雨 娄婷婷 崔旭东 张桂成 傅晓婷 谷挺 马兴 孙军

彭丽英,郭雨,娄婷婷,等. 离子迁移谱现场观测渤海和北黄海二甲基硫的研究[J]. 海洋学报,2022,44(1):1–10 doi: 10.12284/hyxb2022008
引用本文: 彭丽英,郭雨,娄婷婷,等. 离子迁移谱现场观测渤海和北黄海二甲基硫的研究[J]. 海洋学报,2022,44(1):1–10 doi: 10.12284/hyxb2022008
Peng Liying,Guo Yu,Lou Tingting, et al. Field investigation of dimethyl sulfur in the Bohai Sea and northern Yellow Sea by ion mobility spectrometry[J]. Haiyang Xuebao,2022, 44(1):1–10 doi: 10.12284/hyxb2022008
Citation: Peng Liying,Guo Yu,Lou Tingting, et al. Field investigation of dimethyl sulfur in the Bohai Sea and northern Yellow Sea by ion mobility spectrometry[J]. Haiyang Xuebao,2022, 44(1):1–10 doi: 10.12284/hyxb2022008

离子迁移谱现场观测渤海和北黄海二甲基硫的研究

doi: 10.12284/hyxb2022008
基金项目: 天津市教委科研计划(2017KJ013)
详细信息
    作者简介:

    彭丽英(1988-),女,江西省赣州市人,主要从事海洋化学研究。E-mail:2006294047peng@163.com

    通讯作者:

    马兴,男,高级工程师,主要从事分析化学应用研究。E-mail:xingma2005@126.com

    孙军,男,教授,主要从事生物海洋学研究。E-mail:phytoplankton@163.com

  • 中图分类号: P734

Field investigation of dimethyl sulfur in the Bohai Sea and northern Yellow Sea by ion mobility spectrometry

  • 摘要: 渤海、黄海是高产二甲基硫(Dimethyl Sulfide, DMS)的大陆架海区。该海区DMS的现场调查研究有助于准确评估海洋DMS释放量及其对全球气候变化的负反馈作用。目前,无论是基于模型还是直接测量法的通量估算均以表层海水或低层大气DMS浓度为基础,因此,先进的检测技术对其通量估算的准确度具有决定性作用。气相色谱法、质谱法、化学发光法以及卫星遥感技术是现在常用的观测技术,而本文则基于苯辅助光电离离子迁移谱技术进一步提出了一种可在海域现场观测海水中DMS的方法。通过结合动态气提-Nafion管在线除水进样系统,消除环境水汽的干扰;在最优条件下,基于DMS两个产物离子峰,可以实现0.10~120 nmol/L之间DMS的定量分析,检测限低至0.065 nmol/L;然后将所建方法应用于2019年秋季渤海、北黄海海水中DMS的现场观测。结果表明,表层海水中DMS的浓度为0.080~0.96 nmol/L(平均值为(0.44±0.34)nmol/L),其海气通量为0.12~17.75 μmol/(m2·d)(平均值为( 3.23±4.02)μmol/(m2·d));通过结合实验室检测结果、环境因子和浮游植物群落结构讨论了海水样品低温储存条件下DMS的变化和影响因素,结果显示,营养盐成分及浮游植物群落结构是影响储存样品中DMS浓度显著增加的主要因素,进一步表明了现场观测方法的建立对海洋DMS释放量的准确评估具有重要意义。
  • 图  1  动态气提-Nafion管在线除水苯辅助光电离离子迁移谱(Nafion-BAPI-PIMS)检测平台(a)及2019年秋季渤海、北黄海海域调查站位(b)

    Fig.  1  Schematic of gas stripping-Nafion tube benzene-assisted photoionization positive ion mobility spectrometry (Nafion-BAPI-PIMS) (a) and locations of the sampling stations in the Bohai Sea and northern Yellow Sea in autumn 2019 (b)

    图  2  5 mL人工海水中DMS(浓度:10 nmol/L )样品的离子迁移谱图(a)和连续鼓泡进样检测5 mL人工海水样品(DMS浓度:10 nmol/L)得到的产物离子峰的监测曲线(b)

    Fig.  2  Ion mobility spectra of DMS (concentration: 10 nmol/L) in 5 mL artificial seawater (a) and monitoring curves of corresponding DMS product ion peaks’ intensity versus analysis time for 5 mL artificial seawater sample with 10 nmol/L DMS detected through continuous bubble stripping (b)

    图  3  鼓泡气流速(a)和海水进样体积(b)对Nafion管在线除水BAPI-PIMS检测5 mL人工海水样品(DMS浓度为10 nmol/L)的影响

    Fig.  3  The effect of bubbling gas flow rate (a) and seawater sampling volume (b) on the detection of 5 mL artificial seawater with 10 nmol/L DMS by Nafion-BAPI-PIMS

    图  4  2019年秋季渤海、北黄海海域现场观测获得的表层海水中DMS的浓度及其海−气通量分布

    Fig.  4  Distribution of DMS detected on field in the surface seawater and its air-sea exchange flux of the Bohai Sea and the northern Yellow Sea during autumn 2019

    图  5  2019年秋季渤海、北黄海海水DMS的现场观测值和实验室检测值及两者比例的变化曲线

    Fig.  5  The variations of DMS concentration detected on field and in laboratory, and their ratio in the Bohai Sea and the northern Yellow Sea during autumn 2019

    图  6  DMS的现场观测值、实验室检测值及两者的比值与浮游植物群落结构(前15种优势种群)和环境因子间的典范对应分析

    2019年秋季浮游植物的前15种优势种如下:b1. 具槽帕拉藻Paralia sulcate; b2. 蜂腰双壁藻Diploneis bombus; b3. 菱形藻Nitzschia spp.; b4. 柔弱伪菱形藻Pseudonitzschia delicatissima; c. 小等刺硅鞭藻Dictyocha fibula; b5. 曲舟藻Pleurosigma spp.; b6. 斯氏几内亚藻Guinardia striata; b7. 海链藻Thalassiosira spp.; b8. 圆筛藻Coscinodiscus spp.; b9. 格氏圆筛藻Coscinodiscus granii; b10. 细弱圆筛藻Coscinodiscus subtilis; b11. 膜状谬氏藻Meuniera membranacea; b12. 舟形藻Navicula spp.; b13. 洛氏菱形藻Nitzschia lorenziana; b14. 羽纹藻Pinnularia spp.;其中b1−b14为硅藻门优势物种,c为金藻门优势物种

    Fig.  6  Canonical correspondence analysis of DMS concentration detected on field and in laboratory, their ratio, phytoplankton community (top 15 dominant phytoplankton species) and environmental factors

    Top 15 dominant phytoplankton species during autumn 2019: b1. Paralia sulcate; b2. Diploneis bombus; b3. Nitzschia spp.; b4. Pseudonitzschia delicatissima; c. Dictyocha fibula; b5. Pleurosigma spp.; b6. Guinardia striata; b7. Thalassiosira spp.; b8. Coscinodiscus spp.; b9. Coscinodiscus granii; b10. Coscinodiscus subtilis; b11. Meuniera membranacea; b12. Navicula spp.; b13. Nitzschia lorenziana; b14. Pinnularia spp.; among them, b1−b14 are the dominant diatom and c is the dominant chrysophyta

    表  1  人工海水中DMS的定量分析结果

    Tab.  1  Quantitation results for DMS samples prepared with artificial seawater

    参数动态响应曲线R2线性范围/(nmol·L−1)检测限 (信噪比为3, 单位:nmol/L)
    DMS 1强度y=61.46x+7.630.99830.10~10.000.065
    面积y=2 628.34x+126.600.99710.10~20.000.067
    DMS 2强度y=15.46x−49.460.992310.00~80.00
    面积y=608.78x−2423.340.99615.00~120.00
      注:DMS 1代表DMS产物离子单体峰;DMS 2代表DMS产物离子二聚体峰;−代表无数据。
    下载: 导出CSV

    表  2  2019年秋季渤海、北黄海海水中DMS浓度的现场观测值(DMSF)、实验室检测值(DMSL)及两者比值与环境因子的相关性分析

    Tab.  2  Correlation analysis of DMS concentration detected in field (DMSF) and lab (DMSL) and environmental factors in the Bohai Sea and the northern Yellow Sea during autumn 2019

    DMSFDMSLDMSL∶DMSF
    DMSL0.20610.677**
    DMSF10.206−0.536*
    DMSL∶DMSF−0.536*0.677**1
    Chl a浓度0.082−0.116−0.139
    ${{\rm{PO}}_4^{3-} }$浓度−0.808**−0.1870.486*
    TIN浓度−0.832**−0.1470.453*
    ${{\rm{SiO} }_3^{2-}}$浓度−0.852**−0.1910.449*
    温度0.356−0.221−0.308
    盐度0.0560.1900.052
      注:* 在0.05级别(双尾)相关性显著;** 在0.01级别(双尾)相关性显著;TIN代表总无机氮。
    下载: 导出CSV
  • [1] Quinn P K, Bates T S. The case against climate regulation via oceanic phytoplankton sulphur emissions[J]. Nature, 2011, 480(7375): 51−56. doi: 10.1038/nature10580
    [2] Bates T S, Charlson R J, Gammon R H. Evidence for the climatic role of marine biogenic sulphur[J]. Nature, 1987, 329(6137): 319−321. doi: 10.1038/329319a0
    [3] Barnard W R, Andreae M O, Watkins W E, et al. The flux of dimethylsulfide from the oceans to the atmosphere[J]. Journal Geophysical Research: Oceans, 1982, 87(C11): 8787−8793. doi: 10.1029/JC087iC11p08787
    [4] 张麋鸣, 陈立奇, 汪建君. 南大洋二甲基硫海−气交换过程研究进展[J]. 地球科学进展, 2013, 28(9): 1015−1024. doi: 10.11867/j.issn.1001-8166.2013.09.1015

    Zhang Miming, Chen Liqi, Wang Jianjun. Advances in studying the sea-air dimethysulphide exchange process in the Southern Ocean[J]. Advances Earth Science, 2013, 28(9): 1015−1024. doi: 10.11867/j.issn.1001-8166.2013.09.1015
    [5] Qu Bo, Zhao Li, Gabric A J. Simulating the sea-to-air flux of dimethylsulfide in the eastern China marginal seas[J]. Journal of Marine Systems, 2020, 212: 103450. doi: 10.1016/j.jmarsys.2020.103450
    [6] 宋以柱. 中国黄海、渤海DMS和DMSP的浓度分布及影响因素研究[D]. 青岛: 中国海洋大学, 2014.

    Song Yizhu. Studies on the distribution of DMS and DMSP and influencing factors in the Yellow Sea and Bohai Sea, China[D]. Qingdao: Ocean University of China, 2014.
    [7] Marandino C A, De Bruyn W J, Miller S D, et al. Eddy correlation measurements of the air/sea flux of dimethylsulfide over the North Pacific Ocean[J]. Journal Geophysicai Research: Atmos, 2007, 112(D3): D03301.
    [8] Smith M J, Walker C F, Bell T G, et al. Gradient flux measurements of sea-air DMS transfer during the Surface Ocean Aerosol Production (SOAP) experiment[J]. Atmospheric Chemistry and Physics, 2018, 18(8): 5861−5877. doi: 10.5194/acp-18-5861-2018
    [9] Jang S, Park K T, Lee K, et al. An analytical system enabling consistent and long-term measurement of atmospheric dimethyl sulfide[J]. Atmospheric Environment, 2016, 134: 217−223. doi: 10.1016/j.atmosenv.2016.03.041
    [10] Zhang Miming, Chen Liqi. Continuous underway measurements of dimethyl sulfide in seawater by purge and trap gas chromatography coupled with pulsed flame photometric detection[J]. Marine Chemistry, 2015, 174: 67−72. doi: 10.1016/j.marchem.2015.05.006
    [11] 闫士博, 靳娜, 张洪海, 等. 黄、渤海二甲基硫化物的浓度分布与迁移转化速率研究[J]. 海洋学报, 2018, 40(10): 84−95.

    Yan Shibo, Jin Na, Zhang Honghai, et al. Study on concentrations distributions of dimethylated sulfur compounds and their transformation rates in the Yellow Sea and the Bohai Sea[J]. Haiyang Xuebao, 2018, 40(10): 84−95.
    [12] Zhang Miming, Gao Wei, Yan Jinpei, et al. An integrated sampler for shipboard underway measurement of dimethyl sulfide in surface seawater and air[J]. Atmospheric Environment, 2019, 209: 86−91. doi: 10.1016/j.atmosenv.2019.04.022
    [13] Leng Geng, Jin Chaofeng, Bell T G, et al. Automated, high frequency, on-line dimethyl sulfide measurements in natural waters using a novel “microslug” gas-liquid segmented flow method with chemiluminescence detection[J]. Talanta, 2021, 221: 121595. doi: 10.1016/j.talanta.2020.121595
    [14] Okane D, Koveke E P, Tashima K, et al. High sensitivity monitoring device for onboard measurement of dimethyl sulfide and dimethylsulfoniopropionate in seawater and an oceanic atmosphere[J]. Analytical Chemistry, 2019, 91(16): 10484−10491. doi: 10.1021/acs.analchem.9b01360
    [15] Purves R W. Enhancement of biological mass spectrometry by using separations based on changes in ion mobility (FAIMS and DMS)[J]. Analytical and Bioanalytical Chemistry, 2013, 405(1): 35−42. doi: 10.1007/s00216-012-6496-3
    [16] Andreae M O, Barnard W R. Determination of trace quantities of dimethyl sulfide in aqueous solutions[J]. Analytical Chemistry, 1983, 55(4): 608−612. doi: 10.1021/ac00255a006
    [17] Smith G C, Clark T, Knutsen L, et al. Methodology for analyzing dimethyl sulfide and dimethyl sulfoniopropionate in seawater using deuterated internal standards[J]. Analytical Chemistry, 1999, 71(24): 5563−5568. doi: 10.1021/ac990211q
    [18] Li Mei, Huang Wei, Chen Hong, et al. Dopant assisted photoionization ion mobility spectrometry for on-site specific and sensitive determination of atmospheric ammonia[J]. Sensors and Actuators B: Chemical, 2021, 330: 129365. doi: 10.1016/j.snb.2020.129365
    [19] Chen Chuang, Jiang Dandan, Li Haiyang. UV photoionization ion mobility spectrometry: fundamentals and applications[J]. Analytica Chimica Acta, 2019, 1077: 1−13. doi: 10.1016/j.aca.2019.05.018
    [20] Jiang Dandan, Chen Chuang, Wang Weimin, et al. Breath-by-breath measurement of intraoperative propofol by unidirectional anisole-assisted photoionization ion mobility spectrometry via real-time correction of humidity[J]. Analytica Chimica Acta, 2021, 1150: 338223. doi: 10.1016/j.aca.2021.338223
    [21] Sun Tangqiang, Wang Di, Tang Yan, et al. Fabric-phase sorptive extraction coupled with ion mobility spectrometry for on-site rapid detection of PAHs in aquatic environment[J]. Talanta, 2019, 195: 109−116. doi: 10.1016/j.talanta.2018.11.018
    [22] Hopfgartner G. Current developments in ion mobility spectrometry[J]. Analytical and Bioanalytical Chemistry, 2019, 411(24): 6227. doi: 10.1007/s00216-019-02028-1
    [23] Peng Liying, Guo Yu, Gu Ting, et al. Benzene-assisted photoionization positive ion mobility spectrometry coupled with a time-resolved introduction for field detecting dimethyl sulfide in seawater[J]. Analytical Methods, 2020, 12(43): 5168−5176. doi: 10.1039/D0AY01242D
    [24] 厉丞烜. 海水中DMS和DMSP的生物生产与消费的研究[D]. 青岛: 中国海洋大学, 2010.

    Li Chengxuan. Studies on biological production and consumption of DMS and DMSP in seawater[D]. Qingdao: Ocean University of China, 2010.
    [25] 孙军, 刘东艳, 钱树本. 一种海洋浮游植物定量研究分析方法−Utermöhl方法的介绍及其改进[J]. 海洋科学进展, 2002, 20(2): 105−112.

    Sun Jun, Liu Dongyan, Qian Shuben. A quantative research and analysis method for marine phytoplankton: an introduction to Utermöhl method and its modification[J]. Advances in Marine Science, 2002, 20(2): 105−112.
    [26] 山路勇. 日本プランクトン図鑑[M]. 东京: 保育社, 1991: 1-158.

    Isamu Y. Illustrations of the Marine Plankton of Japan[M]. Tokyo: Hoikusha Publishing, 1991: 1−158.
    [27] 金德祥, 陈金环, 黄凯歌. 中国海洋浮游硅藻类[M]. 上海: 上海科学技术出版社, 1965: 1-230.

    Jin Dexiang, Chen Jinhuan, Huang Kaige. Chinese Marine Planktonic Diatoms[M]. Shanghai: Scientific and Technical Publishers, 1965: 1−230.
    [28] 孙军, 刘东艳. 中国海区常见浮游植物种名更改初步意见[J]. 海洋与湖沼, 2002, 33(3): 271−286. doi: 10.3321/j.issn:0029-814X.2002.03.008

    Sun Jun, Liu Dongyan. The preliminary notion on nomenclature of common phytoplankton in China Seas waters[J]. Oceanologia et Limnologia Sinica, 2002, 33(3): 271−286. doi: 10.3321/j.issn:0029-814X.2002.03.008
    [29] Liu Sumei, Li Ruihuan, Zhang Guiling, et al. The impact of anthropogenic activities on nutrient dynamics in the tropical Wenchanghe and Wenjiaohe Estuary and Lagoon system in East Hainan, China[J]. Marine Chemistry, 2011, 125(1/4): 49−68.
    [30] Liss P S, Slater P G. Flux of gases across the air-sea interface[J]. Nature, 1974, 247(5438): 181−184. doi: 10.1038/247181a0
    [31] Nightingale P D, Malin G, Law C S, et al. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers[J]. Global Biogeochemical Cycles, 2000, 14(1): 373−387. doi: 10.1029/1999GB900091
    [32] Saltzman E S, King D B, Holmen K, et al. Experimental determination of the diffusion coefficient of dimethylsulfide in water[J]. Journal Geophysicai Research: Oceans, 1993, 98(C9): 16481−16486. doi: 10.1029/93JC01858
    [33] MD-series gas dryers[EB/OL]. [2021−07−11]. https://www.permapure.com/environmental-scientific/products/gas-sample-dryers/md-gas-dryers/.
    [34] Yang Guiping, Song Yizhu, Zhang Honghai, et al. Seasonal variation and biogeochemical cycling of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the Yellow Sea and Bohai Sea[J]. Journal Geophysicai Research: Oceans, 2014, 119(12): 8897−8915. doi: 10.1002/2014JC010373
    [35] Yang Guipeng, Zhang Shenghui, Zhang Honghai, et al. Distribution of biogenic sulfur in the Bohai Sea and northern Yellow Sea and its contribution to atmospheric sulfate aerosol in the late fall[J]. Marine Chemistry, 2015, 169: 23−32. doi: 10.1016/j.marchem.2014.12.008
    [36] Fu Xiaoting, Sun Jun, Wei Yuqiu, et al. Seasonal shift of a phytoplankton (>5 µm) community in Bohai Sea and the adjacent Yellow Sea[J]. Diversity, 2021, 13(2): 65. doi: 10.3390/d13020065
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  281
  • HTML全文浏览量:  74
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-10
  • 修回日期:  2021-08-09
  • 网络出版日期:  2021-12-01
  • 刊出日期:  2022-01-14

目录

    /

    返回文章
    返回