留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

军曹鱼响应低氧胁迫转录组SNP位点鉴定及其功能注释分析

杨二军 杨林桐 王维政 黄建盛 张健东 王忠良 陈刚

杨二军,杨林桐,王维政,等. 军曹鱼响应低氧胁迫转录组SNP位点鉴定及其功能注释分析[J]. 海洋学报,2022,44(1):113–124 doi: 10.12284/hyxb2022006
引用本文: 杨二军,杨林桐,王维政,等. 军曹鱼响应低氧胁迫转录组SNP位点鉴定及其功能注释分析[J]. 海洋学报,2022,44(1):113–124 doi: 10.12284/hyxb2022006
Yang Erjun,Yang Lintong,Wang Weizheng, et al. Identification and functional analysis of SNP from transcriptome of cobia (Rachycentron canadum) in response to hypoxia stress[J]. Haiyang Xuebao,2022, 44(1):113–124 doi: 10.12284/hyxb2022006
Citation: Yang Erjun,Yang Lintong,Wang Weizheng, et al. Identification and functional analysis of SNP from transcriptome of cobia (Rachycentron canadum) in response to hypoxia stress[J]. Haiyang Xuebao,2022, 44(1):113–124 doi: 10.12284/hyxb2022006

军曹鱼响应低氧胁迫转录组SNP位点鉴定及其功能注释分析

doi: 10.12284/hyxb2022006
基金项目: 南方海洋科学与工程广东省实验室(湛江)资助项目(ZJW-2019-06);财政部和农业农村部:国家现代农业产业技术体系资助项目(CARS-47);广东海洋大学本科生创新创业团队项目(CCTD201804)
详细信息
    作者简介:

    杨二军(1994—),男,甘肃省陇南市人,主要研究方向海水鱼类养殖生理生态学。E-mail:931471532@qq.com

    通讯作者:

    黄建盛,副教授,主要研究方向为海水鱼养殖生理生态学。E-mail:huangjs@gdou.edu.cn

    陈刚,教授,主要研究方向为海水鱼养殖生理生态学。E-mail:cheng@gdou.edu.cn

  • 中图分类号: S965.3

Identification and functional analysis of SNP from transcriptome of cobia (Rachycentron canadum) in response to hypoxia stress

  • 摘要: 为了研究低氧胁迫下军曹鱼肠道转录组中单核苷酸多态性(SNP)标记位点及SNP所在基因SNP-Unigene的作用,通过SOAPsnp软件对军曹鱼幼鱼对照组和低氧胁迫转录组测序结果进行SNP检测,并将其比对到GO、KOG、KEGG数据库进行功能注释。结果显示,军曹鱼转录组SNP位点分布在26 120条SNP-Unigene上,共检测到431 845个SNP位点,SNP平均发生频率约为1/171 bp;SNP-Unigene功能注释发现,在低氧胁迫条件下,军曹鱼SNP-Unigene主要涉及信号转导、传染病、癌症和内分泌系统等信号通路。进一步筛选到3 417条SNP-Unigene被注释到MAPK信号通路等35条与免疫相关的通路中。基于转录组差异基因分析,检测了其中7个重要免疫通路中18个免疫相关基因的SNP位点分布情况。同时,也检测了HIF-1信号通路中PIK3CA等8个差异基因的SNP位点分布情况。研究结果将为进一步挖掘免疫及低氧相关SNP的分子遗传标记奠定基础,为军曹鱼低氧适应机制的深入研究提供科学参考。
  • 图  1  SNP密度频数分布

    Fig.  1  The density frequency distribution of SNP

    图  2  SNP的分布统计

    Fig.  2  The statistics distribution of SNP

    图  3  SNP突变类型数量统计

    Fig.  3  The numbers of different mutation types statistics of SNP

    图  4  SNP位置鉴定

    Fig.  4  Identification of SNP location

    图  5  SNP突变类型鉴定

    Fig.  5  Identification of SNP variants type

    图  6  SNP-Unigene GO功能注释分析

    Fig.  6  GO annotation analysis of SNP-Unigene

    图  7  SNP-Unigene KOG功能注释分析

    Fig.  7  KOG function annotation analysis of SNP-Unigene

    图  8  SNP-Unigene的KEGG功能注释分析

    Fig.  8  KEGG classification of SNP-Unigene

    表  1  SNP位点数量概况

    Tab.  1  The number of the SNP sites

    组别CT组HT组合计
    SNP-Unigene数13 07613 04426 120
    SNP位点总数215 953215 892431 845
    纯合SNP位点数76 55076 092152 642
    下载: 导出CSV

    表  2  免疫防御相关SNP-Unigene的KEGG富集分析

    Tab.  2  KEGG enrichment analysis of immune-related SNP-Unigene

    KEGG信号通路信号通路IDSNP-Unigene数目
    MAPK信号通路ko04010262
    神经活性配体−受体相互作用ko04080228
    Rap1信号通路ko04015190
    Ras信号通路ko04014164
    Wnt信号通路ko04310144
    细胞因子−细胞因子受体相互作用ko04060137
    细胞凋亡ko04210130
    mTOR信号通路ko04150129
    吞噬体ko04145123
    趋化因子信号通路ko04062117
    血小板活化ko04611117
    FoxO信号通路ko04068117
    NOD样受体信号通路ko04621113
    白细胞经内皮迁移ko04670101
    TNF信号通路ko0466895
    Jak-STAT信号通路ko0463093
    T细胞受体信号通路ko0466092
    TRP通道的炎症介质调节ko0475089
    NF-κB信号通路ko0406481
    TGF-β信号通路ko0435080
    Fcγ-R介导的吞噬作用ko0466679
    B细胞受体信号通路ko0466273
    造血细胞系ko0464072
    Toll样受体信号通路ko0462071
    自然杀伤细胞介导的细胞毒性ko0465069
    Notch信号通路ko0433063
    PPAR信号通路ko0332056
    IL-17信号通路ko0465755
    补体和凝血级联ko0461053
    Fc ε RI信号通路ko0466447
    抗原处理与呈递ko0461247
    RIG-I样受体信号通路ko0462245
    Toll和Imd信号通路ko0462435
    肠道免疫网络Ig A的产生ko0467227
    细胞质DNA传感通路 ko04623 23
    合计3 417
    下载: 导出CSV

    表  3  CT和HT转录组中差异表达免疫防御及低氧相关基因SNP位点分析

    Tab.  3  SNP identified in differentially expressed immune and hypoxia-related genes in CT and HT transcriptomes

    信号通路基因名称低氧后表达
    水平
    CT-SNP
    数目
    HT-SNP
    数目
    MAPK信号通路
    IL1R1上调44
    ERBB3上调55
    CACNA1E上调44
    Wnt信号通路
    FZD3下调31
    LRP5下调55
    PLCB2上调1011
    PLCB3下调77
    NFATC4上调66
    mTOR信号通路
    LPIN1上调99
    LPIN2下调33
    DDIT4上调22
    Jak-STAT信号通路
    GHR下调88
    LEPR上调55
    IL4RA上调99
    NOD样受体信号通路
    TRPM7下调1717
    Toll和Imd信号通路
    ANK3上调1818
    NF-κB信号通路
    BTK下调33
    TNFRSF11A下调22
    HIF-1信号通路
    PIK3CA下调54
    HK1上调44
    EPAS1下调33
    GAPDH下调22
    EDN1下调11
    ENO3下调11
    ANGPT1上调44
    ANGPT2上调11
    下载: 导出CSV
  • [1] Fan Shiliang, Li Haidong, Zhao Rui. Effects of normoxic and hypoxic conditions on the immune response and gut microbiota of Bostrichthys sinensis[J]. Aquaculture, 2020, 525: 735336. doi: 10.1016/j.aquaculture.2020.735336
    [2] 贾玉东, 王嘉伟, 李娟, 等. 溶解氧对鱼类生理功能影响及调控机制[J]. 水产研究, 2020, 7(1): 8−14. doi: 10.12677/OJFR.2020.71002

    Jia Yudong, Wang Jiawei, Li Juan, et al. Effect of dissolved oxygen on physiological functions and mechanism in fish[J]. Open Journal of Fisheries Research, 2020, 7(1): 8−14. doi: 10.12677/OJFR.2020.71002
    [3] 穆景利, 靳非, 赵化德, 等. 水体低氧的早期暴露对青鳉(Oryzias latipes)后期的生长、性别比和繁殖能力的影响[J]. 生态毒理学报, 2017, 12(2): 137−146. doi: 10.7524/AJE.1673-5897.20160508002

    Mu Jingli, Jin Fei, Zhao Huade, et al. Early-life exposure to hypoxia altered growth, sex ratio, and reproduction in Medaka (Oryzias latipes)[J]. Asian Journal of Ecotoxicology, 2017, 12(2): 137−146. doi: 10.7524/AJE.1673-5897.20160508002
    [4] Vanderplancke G, Claireaux G, Quazuguel P, et al. Hypoxic episode during the larval period has long-term effects on European sea bass juveniles (Dicentrarchus labrax)[J]. Marine Biology, 2015, 162(2): 367−376. doi: 10.1007/s00227-014-2601-9
    [5] 林艾影, 王维政, 陈刚, 等. 2种乳酸菌对军曹鱼幼鱼生长及消化酶、免疫酶活性的影响[J]. 广东海洋大学学报, 2020, 40(5): 112−117. doi: 10.3969/j.issn.1673-9159.2020.05.014

    Lin Aiying, Wang Weizheng, Chen Gang, et al. Effects of two lactic acid bacteria on growth performance and activities of digestive and non-specific immune enzymes of juvenile cobia (Rachycentron canadum)[J]. Journal of Guangdong Ocean University, 2020, 40(5): 112−117. doi: 10.3969/j.issn.1673-9159.2020.05.014
    [6] 勾效伟, 区又君, 廖锐. 我国军曹鱼研究现状[J]. 海洋渔业, 2007, 29(1): 84−89. doi: 10.3969/j.issn.1004-2490.2007.01.016

    Gou Xiaowei, Ou Youjun, Liao Rui. Present status on studies of cobia Rachycentron canadum in China[J]. Marine Fisheries, 2007, 29(1): 84−89. doi: 10.3969/j.issn.1004-2490.2007.01.016
    [7] 王维政, 曾泽乾, 黄建盛, 等. 低氧胁迫对军曹鱼幼鱼生长、血清生化和非特异性免疫指标的影响[J]. 海洋学报, 2021, 43(2): 49−58.

    Wang Weizheng, Zeng Zeqian, Huang Jiansheng, et al. Hypoxia stress on growth, serum biochemical and non-specific immune indexes of juvenile cobia (Rachycentron canadum)[J]. Haiyang Xuebao, 2021, 43(2): 49−58.
    [8] 王维政, 曾泽乾, 黄建盛, 等. 低氧胁迫对军曹鱼幼鱼抗氧化、免疫能力及能量代谢的影响[J]. 广东海洋大学学报, 2020, 40(5): 12−18. doi: 10.3969/j.issn.1673-9159.2020.05.002

    Wang Weizheng, Zeng Zeqian, Huang Jiansheng, et al. Effects of hypoxia stress on antioxidation, immunity and energy metabolism of juvenile cobia, Rachycentron canadum[J]. Journal of Guangdong Ocean University, 2020, 40(5): 12−18. doi: 10.3969/j.issn.1673-9159.2020.05.002
    [9] 李洪娟, 陈刚, 郭志雄, 等. 军曹鱼(Rachycentron canadum)幼鱼对环境低氧胁迫氧化应激与能量利用指标的响应[J]. 海洋学报, 2020, 42(4): 12−19.

    Li Hongjuan, Chen Gang, Guo Zhixiong, et al. Oxidative stress and energy utilization responses of juvenile cobia (Rachycentron canadum) to environmental hypoxia stress[J]. Haiyang Xuebao, 2020, 42(4): 12−19.
    [10] 郭志雄, 曾泽乾, 黄建盛, 等. 急性低氧胁迫对大规格军曹鱼幼鱼肝脏氧化应激、能量利用及糖代谢的影响[J]. 广东海洋大学学报, 2020, 40(3): 134−140. doi: 10.3969/j.issn.1673-9159.2020.03.017

    Guo Zhixiong, Zeng Zeqian, Huang Jiansheng, et al. Effects of acute hypoxia on oxidative stress, energy utilization and carbohydrate metabolism in liver of large-sized juvenile cobia (Rachycentron canadum)[J]. Journal of Guangdong Ocean University, 2020, 40(3): 134−140. doi: 10.3969/j.issn.1673-9159.2020.03.017
    [11] 黄建盛, 陆枝, 陈刚, 等. 急性低氧胁迫对军曹鱼大规格幼鱼血液生化指标的影响[J]. 海洋学报, 2019, 41(6): 76−84.

    Huang Jiansheng, Lu Zhi, Chen Gang, et al. Acute hypoxia stress on blood biochemical indexes of large-sized juvenile cobia (Rachycentron canadum)[J]. Haiyang Xuebao, 2019, 41(6): 76−84.
    [12] Wang Weizheng, Huang Jiansheng, Zhang Jiandong, et al. Effects of hypoxia stress on the intestinal microflora of juvenile of cobia (Rachycentron canadum)[J]. Aquaculture, 2021, 536: 736419. doi: 10.1016/j.aquaculture.2021.736419
    [13] 张晓萌, 马普, 王洪迪, 等. SNPs在水产动物中的研究进展[J]. 生物技术通报, 2013(8): 7−11.

    Zhang Xiaomeng, Ma Pu, Wang Hongdi, et al. Progresses of SNPs studies in aquaculture animals[J]. Biotechnology Bulletin, 2013(8): 7−11.
    [14] 赵莲, 薛蓓, 高焕, 等. SNP分子标记技术在经济甲壳动物中的应用进展[J]. 海洋渔业, 2017, 39(2): 233−240. doi: 10.3969/j.issn.1004-2490.2017.02.013

    Zhao Lian, Xue Bei, Gao Huan, et al. Progress on the SNP molecular markers in economic crustaceans[J]. Marine Fisheries, 2017, 39(2): 233−240. doi: 10.3969/j.issn.1004-2490.2017.02.013
    [15] 侯振平, 蒋思文. 单核苷酸多态性的研究进展[J]. 中国畜牧杂志, 2004, 40(4): 45−47. doi: 10.3969/j.issn.0258-7033.2004.04.017

    Hou Zhenping, Jiang Siwen. Advance in single nucleotide polymorphism[J]. Chinese Journal of Animal Science, 2004, 40(4): 45−47. doi: 10.3969/j.issn.0258-7033.2004.04.017
    [16] 王婷, 黄智慧, 马爱军, 等. 基于转录组数据的大菱鲆(Scophthalmus maximus)SNP标记开发及多态性分析[J]. 海洋与湖沼, 2014, 45(6): 1300−1307.

    Wang Ting, Huang Zhihui, Ma Aijun, et al. Development and polymorphic analysis of SNP markers in Scophthalmus maximus based on transcriptome database[J]. Oceanologia et Limnologia Sinica, 2014, 45(6): 1300−1307.
    [17] Tsai H Y, Robledo D, Lowe N R, et al. Construction and annotation of a high density SNP linkage map of the Atlantic salmon (Salmo salar) genome[J]. G3 Genes| Genomes| Genetics, 2016, 6(7): 2173−2179.
    [18] 刘敬文. 凡纳滨对虾免疫基因SNPs开发及其与WSSV抗性的关联分析[D]. 青岛: 中国科学院研究生院(海洋研究所), 2014.

    Liu Jingwen. SNPs identification of immune related genes from Litopenaeus vannamei and their association analyses to WSSV resistance[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2014.
    [19] 张德宁, 吕建建, 刘萍, 等. 三疣梭子蟹生长相关SNP位点的鉴定[J]. 中国水产科学, 2015, 22(3): 393−401.

    Zhang Dening, Lü Jianjian, Liu Ping, et al. Identifying SNP markers correlated with growth of swimming crab (Portunus trituberculatus) based on a comparative transcriptome[J]. Journal of Fishery Sciences of China, 2015, 22(3): 393−401.
    [20] 王忠良, 丁燏, 许尤厚, 等. 马氏珠母贝(Pinctada fucata)血细胞转录组测序数据中SNP标记的开发及其功能注释分析[J]. 海洋与湖沼, 2018, 49(2): 403−412.

    Wang Zhongliang, Ding Yu, Xu Youhou, et al. SNP discovery and functional annotation in transcriptome datasets from hemocytes of Pinctada fucata[J]. Oceanologia et Limnologia Sinica, 2018, 49(2): 403−412.
    [21] 李纪勤, 包振民, 李玲, 等. 栉孔扇贝EST-SNP标记开发及多态性分析[J]. 中国海洋大学学报, 2013, 43(1): 56−63.

    Li Jiqin, Bao Zhenmin, Li Ling, et al. Development and characterization of EST-SNP in Chlamys farreri[J]. Periodical of Ocean University of China, 2013, 43(1): 56−63.
    [22] 雒林通, 马芳, 唐德富, 等. 基于益生菌调节的太平鸡回肠SNP位点分析[J]. 安徽农业科学, 2020, 48(21): 86−90, 94. doi: 10.3969/j.issn.0517-6611.2020.21.023

    Luo Lintong, Ma Fang, Tang Defu, et al. SNP site analysis of Taiping chicken ileum based on probiotic regulation[J]. Journal of Anhui Agricultural Sciences, 2020, 48(21): 86−90, 94. doi: 10.3969/j.issn.0517-6611.2020.21.023
    [23] 王菁, 刘付柏, 许尤厚, 等. 基于转录组测序的方斑东风螺单核苷酸多态性位点挖掘及功能注释[J]. 广东海洋大学学报, 2021, 41(1): 111−118. doi: 10.3969/j.issn.1673-9159.2021.01.015

    Wang Jing, Liu Fubai, Xu Youhou, et al. SNP site biological analysis of Babylonia areolata based on RNA-seq technology[J]. Journal of Guangdong Ocean University, 2021, 41(1): 111−118. doi: 10.3969/j.issn.1673-9159.2021.01.015
    [24] 唐修阳, 王传聪, 项杰, 等. 罗氏沼虾转录组免疫相关SNP的挖掘与分析[J]. 江苏农业科学, 2019, 47(4): 145−148.

    Tang Xiuyang, Wang Chuancong, Xiang Jie, et al. Mining and analysis of immune-related SNPs in transcriptome of Macrobrachium rosenbergii[J]. Jiangsu Agricultural Sciences, 2019, 47(4): 145−148.
    [25] 陈柏湘, 王伟峰, 王卫民, 等. 团头鲂低氧耐受相关SNPs标记的开发[J]. 华中农业大学学报, 2019, 38(2): 23−29.

    Chen Boxiang, Wang Weifeng, Wang Weimin, et al. Isolation of SNP markers associated with hypoxia tolerance in Megalobrama amblycephala[J]. Journal of Huazhong Agricultural University, 2019, 38(2): 23−29.
    [26] An Rui, Fu Jianjun, Jiang Bingjie, et al. Development of SNP markers for the bighead carp (Hypophthalmichthys nobilis) by using transcriptomic sequences[J]. Conservation Genetics Resources, 2020, 12(3): 409−412. doi: 10.1007/s12686-020-01133-z
    [27] 曹丹煜. 军曹鱼幼鱼盐度适应特性及渗透压调节分子机制的初步分析[D]. 湛江: 广东海洋大学, 2020.

    Cao Danyu. Preliminary analysis of salinity adaptation characteristics and osmotic pressure regulation molecular mechanism of juvenile cobia, Rachycentron canadum[D]. Zhanjiang: Guangdong Ocean University, 2020.
    [28] 王伟佳, 韩兆方, 李完波, 等. 大黄鱼雌雄性腺长链非编码RNA的挖掘与差异分析[J]. 中国水产科学, 2019, 26(5): 852−860.

    Wang Weijia, Han Zhaofang, Li Wanbo, et al. The identification and analysis of long noncoding RNA in testes and ovaries of the large yellow croaker (Larimichthys crocea)[J]. Journal of Fishery Sciences of China, 2019, 26(5): 852−860.
    [29] 张美彦, 宋春艳, 于海龙, 等. 基于SNP分型的香菇交配型AS-PCR鉴定[J]. 食用菌学报, 2019, 26(2): 1−9.

    Zhang Meiyan, Song Chunyan, Yu Hailong, et al. Mating-type identification of Lentinula edodes based on SNP genotyping by AS-PCR[J]. Acta Edulis Fungi, 2019, 26(2): 1−9.
    [30] 范欢欢, 王天骄, 董依萌, 等. 马鹿特异性SNP分子标记的验证[J]. 中国畜牧兽医, 2021, 48(4): 1313−1322.

    Fan Huanhuan, Wang Tianjiao, Dong Yimeng, et al. Verification of red deer specific molecular marker SNP[J]. China Animal Husbandry & Veterinary Medicine, 2021, 48(4): 1313−1322.
    [31] Wang Kai, Li Mingyao, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Research, 2010, 38(16): e164. doi: 10.1093/nar/gkq603
    [32] Wang Wenji, Yi Qilin, Ma Liman, et al. Sequencing and characterization of the transcriptome of half-smooth tongue sole (Cynoglossus semilaevis)[J]. BMC Genomics, 2014, 15(1): 470. doi: 10.1186/1471-2164-15-470
    [33] Wang Panpan, Xiao Shijun, Han Zhaofang, et al. SNP discovery in large yellow croaker (Larimichthys crocea) using Roche 454 pyrosequencing sequencing platform[J]. Conservation Genetics Resources, 2015, 7(4): 777−779. doi: 10.1007/s12686-015-0481-z
    [34] Hayes B, Laerdahl J K, Lien S, et al. An extensive resource of single nucleotide polymorphism markers associated with Atlantic salmon (Salmo salar) expressed sequences[J]. Aquaculture, 2007, 265(1/4): 82−90.
    [35] Zhao Hui, Li Qizhai, Li Jun, et al. The study of neighboring nucleotide composition and transition/transversion bias[J]. Science in China Series C: Life Sciences, 2006, 49(4): 395−402. doi: 10.1007/s11427-006-2002-5
    [36] 李胜杰, 白俊杰, 赵荦, 等. 大口黑鲈EST-SNP标记开发及其与生长性状的相关性分析[J]. 海洋渔业, 2018, 40(1): 38−46. doi: 10.3969/j.issn.1004-2490.2018.01.005

    Li Shengjie, Bai Junjie, Zhao Luo, et al. Development of EST-SNPs in largemouth bass (Micropterus salmoides) and analysis of their correlation with growth traits[J]. Marine Fisheries, 2018, 40(1): 38−46. doi: 10.3969/j.issn.1004-2490.2018.01.005
    [37] 李彦杰, 贾洪沅, 李庆天, 等. 基于转录组数据的三峡库区消落带适生狗牙根SNPs和SSRs分析[J]. 西南农业学报, 2020, 33(3): 524−528.

    Li Yanjie, Jia Hongyuan, Li Qingtian, et al. Analysis of SNPs and SSRs of suitable Cynodon dactylon in fluctuating zone of Three Gorges Reservoir Area based on transcriptome data[J]. Southwest China Journal of Agricultural Sciences, 2020, 33(3): 524−528.
    [38] Zhao Zhongming, Boerwinkle E. Neighboring-nucleotide effects on single nucleotide polymorphisms: a study of 2.6 million polymorphisms across the human genome[J]. Genome Research, 2002, 12(11): 1679−1686. doi: 10.1101/gr.287302
    [39] 唐立群, 肖层林, 王伟平. SNP分子标记的研究及其应用进展[J]. 中国农学通报, 2012, 28(12): 154−158. doi: 10.11924/j.issn.1000-6850.2012-0074

    Tang Liqun, Xiao Cenglin, Wang Weiping. Research and application progress of SNP markers[J]. Chinese Agricultural Science Bulletin, 2012, 28(12): 154−158. doi: 10.11924/j.issn.1000-6850.2012-0074
    [40] 谭新, 童金苟. SNPs及其在水产动物遗传学与育种学研究中的应用[J]. 水生生物学报, 2011, 35(2): 348−354. doi: 10.3724/SP.J.1035.2011.00348

    Tan Xin, Tong Jingou. SNPs and their applications in studies on genetics and breeding of aquaculture animals[J]. Acta Hydrobiologica Sinica, 2011, 35(2): 348−354. doi: 10.3724/SP.J.1035.2011.00348
    [41] 孙明洁, 张娜, 徐善良, 等. 两种弧菌感染大黄鱼免疫相关基因的SNP位点分析[J]. 上海海洋大学学报, 2019, 28(5): 772−781. doi: 10.12024/jsou.20190402623

    Sun Mingjie, Zhang Na, Xu Shanliang, et al. Analysis of SNP loci in immune-related genes of two species of Vibrio infecting large yellow croaker (Larimichthys crocea)[J]. Journal of Shanghai Ocean University, 2019, 28(5): 772−781. doi: 10.12024/jsou.20190402623
    [42] 张磊. 鮸鱼microRNA-21对IL1R1的免疫调控机制研究[D]. 舟山: 浙江海洋大学, 2020.

    Zhang Lei. Study on the immune regulation mechanism of microRNA-21 on IL1R1 in Miichthys miiuy[D]. Zhoushan: Zhejiang Ocean University, 2020.
    [43] Lam S Y, Tipoe G L, Liong E C, et al. Chronic hypoxia upregulates the expression and function of proinflammatory cytokines in the rat carotid body[J]. Histochemistry and Cell Biology, 2008, 130(3): 549−559. doi: 10.1007/s00418-008-0437-4
    [44] 郭旗, 李超. IL1R1和IL1R2基因多态性与缺血性脑卒中患病风险的相关性[J]. 贵州医科大学学报, 2018, 43(3): 294−298.

    Guo Qi, Li Chao. Association of IL1R1 and IL1R2 gene polymorphisms with risk of ischemic stroke[J]. Journal of Guizhou Medical University, 2018, 43(3): 294−298.
    [45] 胡亮. 藏系绵羊种质资源鉴定技术的研究[D]. 扬州: 扬州大学, 2019.

    Hu Liang. Study on identification techniques of Tibetan Sheep germplasm resources[D]. Yangzhou: Yangzhou University, 2019.
    [46] 赵亚男, 刘明, 张玥, 等. Wnt信号通路与皮肤创面愈合的关系[J]. 现代生物医学进展, 2015, 15(11): 2173−2176, 2184.

    Zhao Ya’nan, Liu Ming, Zhang Yue, et al. The relationship between Wnt signaling pathway and skin wound healing[J]. Progress in Modern Biomedicine, 2015, 15(11): 2173−2176, 2184.
    [47] 陈爽, 张晓敏. Wnt信号通路在自身免疫性疾病中的作用研究进展[J]. 中国免疫学杂志, 2021, 37(2): 254−258. doi: 10.3969/j.issn.1000-484X.2021.02.025

    Chen Shuang, Zhang Xiaomin. Research progress on role of Wnt signaling pathway in autoimmune diseases[J]. Chinese Journal of Immunology, 2021, 37(2): 254−258. doi: 10.3969/j.issn.1000-484X.2021.02.025
    [48] 张丽晗, 罗智, 有文静, 等. 黄颡鱼FZD家族4个基因的克隆、组织表达及对铜的响应[J]. 水产学报, 2018, 42(5): 625−632.

    Zhang Lihan, Luo Zhi, You Wenjing, et al. Molecular characterization and tissue distribution of Frizzled (FZD) in yellow catfish (Pelteobagrus fulvidraco) by copper exposure[J]. Journal of Fisheries of China, 2018, 42(5): 625−632.
    [49] Zhao Bingru, Fu Xuefeng, Tian Kechuan, et al. Identification of SNPs and expression patterns of FZD3 gene and its effect on wool traits in Chinese Merino sheep (Xinjiang Type)[J]. Journal of Integrative Agriculture, 2019, 18(10): 2351−2360. doi: 10.1016/S2095-3119(19)62735-8
    [50] 张璐. 环境因素及LRP5基因与2型糖尿病发病关联的队列研究[D]. 郑州: 郑州大学, 2017.

    Zhang Lu. Association of environmental factors and LRP5 gene with type 2 diabetes mellitus in a cohort study[D]. Zhengzhou: Zhengzhou University, 2017.
    [51] Eaton J M, Mullins G R, Brindley D N, et al. Phosphorylation of lipin 1 and charge on the phosphatidic acid head group control its phosphatidic acid phosphatase activity and membrane association[J]. Journal of Biological Chemistry, 2013, 288(14): 9933−9945. doi: 10.1074/jbc.M112.441493
    [52] Lu Shuxian, Lü Zhaojie, Wang Zhihao, et al. Lipin 1 deficiency causes adult-onset myasthenia with motor neuron dysfunction in humans and neuromuscular junction defects in zebrafish[J]. Theranostics, 2021, 11(6): 2788−2805. doi: 10.7150/thno.53330
    [53] Mylonis I, Sembongi H, Befani C, et al. Hypoxia causes triglyceride accumulation by HIF-1-mediated stimulation of lipin 1 expression[J]. Journal of Cell Science, 2012, 125(14): 3485−3493.
    [54] He Xiaoping, Xu Xuewen, Zhao Shuhong, et al. Investigation of Lpin1 as a candidate gene for fat deposition in pigs[J]. Molecular Biology Reports, 2009, 36(5): 1175−1180. doi: 10.1007/s11033-008-9294-4
    [55] 郭志雄. 低氧环境对军曹鱼幼鱼生化指标、相关基因表达的影响及其转录组学分析[D]. 湛江: 广东海洋大学, 2020.

    Guo Zhixiong. Effects of hypoxic environment on biochemical indexes, related gene expression and transcriptome analysis of cobia juveniles[D]. Zhanjiang: Guangdong Ocean University, 2020.
    [56] Zhang Kai, Liu Xiumei, Han Miao, et al. Functional differentiation of three phosphatidylinositol 3-kinase catalytic subunit alpha (PIK3CA) in response to Vibrio anguillarum infection in turbot (Scophthalmus maximus)[J]. Fish & Shellfish Immunology, 2019, 92: 450−459.
    [57] Engelman J A, Luo Ji, Cantley L C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism[J]. Nature Reviews Genetics, 2006, 7(8): 606−619. doi: 10.1038/nrg1879
    [58] Wu Xiaoyun, Ding Xuezhi, Chu Min, et al. Novel SNP of EPAS1 gene associated with higher hemoglobin concentration revealed the hypoxia adaptation of yak (Bos grunniens)[J]. Journal of Integrative Agriculture, 2015, 14(4): 741−748. doi: 10.1016/S2095-3119(14)60854-6
    [59] 朱莉, 李根, 孔小艳, 等. 藏绵羊血红蛋白、EPAS1基因与低氧适应相关性研究[J]. 云南农业大学学报(自然科学版), 2020, 35(3): 436−442.

    Zhu Li, Li Gen, Kong Xiaoyan, et al. The association of genes hemoglobin and EPAS1 with hypoxia adaptation in the Tibetan Sheep[J]. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(3): 436−442.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  121
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-12
  • 修回日期:  2021-08-12
  • 网络出版日期:  2021-09-02
  • 刊出日期:  2022-01-14

目录

    /

    返回文章
    返回