Occurrence phases of rare earth elements and platinum group elements in cobalt-rich crusts from the Seamount Xufu in the Pacific
-
摘要: 利用等离子体发射光谱法、等离子体质谱法以及相态分析手段,对太平洋徐福海山富钴结壳稀土和铂族元素地球化学特征、赋存状态及富集机制进行研究。结果表明,富钴结壳稀土和铂族元素明显富集,其稀土总量为1 842~2 854 μg/g,铂族总量为144~1 180 ng/g,老壳层中稀土和铂族元素含量明显高于新壳层,这可能与老壳层发生磷酸盐化作用有关。轻稀土元素含量明显高于重稀土元素含量,呈现Ce正异常而Eu无异常,具有明显Ce富集特征。铂族元素之间发生了明显分异作用,PPGE含量明显高于IPGE,表现出明显Pt正异常而Pd负异常,具有明显Pt富集而Pd亏损特征。稀土元素赋存状态显示,新壳层中稀土元素主要赋存于铁氧化物相,其富集比例为65.40%~70.05%,老壳层中稀土元素主要赋存于残渣态,富集比例为62.27%~65.77%,这可能与残渣态中磷酸盐有关。铂族元素赋存状态显示,新壳层和老壳层中铂族元素都主要赋存于铁氧化物相,其富集比例为63.66%~69.51%,残渣态(29.20%~34.68%)对铂族元素也有一定的富集能力。富钴结壳稀土和铂族元素的富集推测为铁氧化物胶体粒子的吸附作用,受海水氧化性环境影响,可溶性Ce3+和Pt2+分别被氧化成不溶性Ce4+和Pt4+,沉淀被吸附到铁氧化物相中,从而造成富钴结壳稀土和铂族元素的富集。Abstract: The geochemistry, occurrence phase and enrichment mechanism of REE and PGE were studied in cobalt-rich crusts from the Seamount Xufu in the Pacific by ICP-OES, ICP-MS and phase analysis methods. The results showed that, REE and PGE were enriched in cobalt-rich crusts, REE contents were 1 842−2854 μg/g, and PGE contents were 144−1180 ng/g. REE and PGE contents in the old layers were higher than that in the new layers, and the phosphatization in the old layers might play an active role in the REE and PGE enrichment. Moreover, LREE contents were more than HREE contents, and REE diagrams showed the positive Ce anomalies and no Eu anomalies, so Ce was enriched in cobalt-rich crusts. Meanwhile, there was an obvious contrast between PGE, and PPGE contents were more than IPGE contents. PGE diagrams showed the positive Pt anomalies and negative Pd anomalies, so Pt was enriched and Pd was poor in cobalt-rich crusts. In addition, REE in the new layers were mainly enriched in the iron oxide phase, and the enrichment ratios were 65.40%−70.05%. While REE in the old layers were mainly enriched in the residual phase, and the enrichment ratios were 62.27%−65.77%, because it might be related to the phosphate. Meanwhile, PGE in the new or old layers were mainly enriched in the iron oxide phase, and the enrichment ratios were 63.66%−69.51%, and also the residual phase ranged from 29.20% to 34.68% had an impact on PGE enrichment. Therefore, REE and PGE enrichment were presumed to the iron oxide colloid particles adsorption. In the marine oxidative environment, the soluble Ce3+ and Pt2+ were oxidized to insoluble Ce4+ and Pt4+ respectively, and the precipitates were adsorbed into the iron oxide phase, so REE and PGE were enriched in cobalt-rich crusts.
-
Key words:
- the Pacific /
- cobalt-rich crusts /
- REE /
- PGE /
- occurrence phase
-
表 1 富钴结壳不同构造层样品描述
Tab. 1 Description of different structural layer in cobalt-rich crusts
样品编号 构造层 深度/mm 样品描述 XD3(I) 第I构造层 0~14 褐黑色,较致密,表层鲕粒状突起,柱状构造 XD3(II) 第II构造层 14~24 黑色,致密,柱状构造 XD3(III) 第III构造层 24~56 黄褐色,疏松,黏土较多,
树枝状构造XD3(IV) 第IV构造层 56~82 黑色,致密,磷酸盐化严重,
斑杂状构造XD3(V) 第V构造层 82~120 亮黑色,致密,较多磷酸盐脉,水平纹状构造 表 2 富钴结壳不同构造层中稀土元素含量
Tab. 2 REE contents of different structural layer in cobalt-rich crusts
样号 XD3(I) XD3(II) XD3(III) XD3(IV) XD3(V) 北美页岩 La 277 297 286 309 375 32.0 Ce 820 924 886 1114 1 459 73.0 Pr 58.8 65.3 59.7 65.7 76.4 7.90 Nd 235 256 234 261 302 33.0 Sm 46.8 49.2 47.0 49.6 58.9 5.70 Eu 11.5 12.1 11.3 12.2 14.5 1.24 Gd 58.0 58.2 53.1 60.3 68.5 5.20 Tb 9.31 9.31 8.19 8.71 10.0 0.90 Dy 54.0 53.5 49.2 50.7 59.3 5.80 Ho 10.3 11.3 9.64 10.3 11.7 1.04 Er 32.0 31.6 30.0 29.6 33.7 3.40 Tm 4.57 4.54 4.22 4.16 4.90 0.50 Yb 29.7 28.8 26.8 27.1 31.9 3.10 Lu 4.48 4.35 4.02 4.04 4.76 0.50 Y 191 202 175 306 344 27.0 REE 1 842 2 007 1 885 2313 2 854 200 LREE 1 450 1 604 1 525 1812 2 286 153 HREE 393 403 360 501 568 47.4 LREE/
HREE3.69 3.98 4.23 3.61 4.02 3.22 Y/Ho 18.4 17.8 18.2 29.7 29.4 26.0 LaN/YbN 0.91 1.00 1.04 1.10 1.14 1.00 δCe 1.40 1.44 1.47 1.70 1.87 1.00 δEu 0.97 0.99 0.99 0.98 1.01 1.00 注:表中元素La至HREE含量单位为μg/g;轻稀土元素(LREE)=La+Ce+Pr+Nd+Sm+Eu;重稀土元素(HREE)=Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu+Y;δCe=2CeN/(LaN+PrN);δEu=2EuN/(SmN+GdN);LaN、CeN、PrN、SmN、EuN、GdN均为北美页岩标准化后的值,北美页岩数据引自文献[27]。 表 3 富钴结壳不同构造层中铂族元素含量
Tab. 3 PGE contents of different structural layer in cobalt-rich crusts
样号 XD3(I) XD3(II) XD3(III) XD3(IV) XD3(V) CI球粒
陨石Os 0.27 0.30 0.50 0.62 0.24 490 Ir 2.79 2.86 3.56 4.79 2.23 455 Ru 7.04 7.06 9.45 13.1 5.34 710 Rh 9.55 8.73 23.8 42.0 10.6 130 Pt 128 123 547 1 114 211 1 010 Pd 1.74 1.56 3.46 5.81 1.74 550 Au 1.31 1.34 1.79 2.81 1.32 140 PGE 150 144 588 1 180 231 232 PPGE 141 135 576 1 164 224 1 830 IPGE 10.1 10.2 13.5 18.5 7.81 1 655 PPGE/IPGE 14.0 13.2 42.6 62.9 28.7 1.11 Pt/Pd 73.8 79.1 158 192 121 1.84 Pt/Ir 46.1 43.2 153.5 232 94.5 2.22 Pd/Ir 0.62 0.55 0.97 1.20 0.78 1.21 Ir/Au 2.14 2.13 1.99 1.71 1.68 3.25 δPt 8.34 8.85 15.9 18.9 13.0 1.00 δPd 0.09 0.08 0.08 0.07 0.07 1.00 注:表中元素Os至IPGE含量单位为ng/g;Pd组(PPGE)=Rh+Pt+Pd+Au;Ir组(IPGE)=Os+Ir+Ru;δPt=${{\rm{Pt}}_{\rm{N}}} $/${ \sqrt{{{\rm{Rh}}}_{{\rm{N}}} \cdot {{\rm{Pd}}}_{{\rm{N}}}}} $;δPd=${ {{\rm{Pd}}}_{{\rm{N}}}} $/${ \sqrt{{\mathrm{P}\mathrm{t}}_{{\rm{N}}} \cdot {\mathrm{A}\mathrm{u}}_{{\rm{N}}}}} $;RhN、PtN、PdN、AuN均为CI球粒陨石标准化后的值,CI球粒陨石数据引自文献[28]。 -
[1] Hein J R, Conrad T, Mizell K, et al. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 110: 1−19. doi: 10.1016/j.dsr.2015.11.006 [2] Marino E, González F J, Somoza L, et al. Strategic and rare elements in Cretaceous-Cenozoic cobalt-rich ferromanganese crusts from seamounts in the Canary Island Seamount Province (northeastern tropical Atlantic)[J]. Ore Geology Reviews, 2017, 87: 41−61. doi: 10.1016/j.oregeorev.2016.10.005 [3] Jiang Xiaodong, Sun Xiaoming, Chou Yumin, et al. Geochemistry and origins of carbonate fluorapatite in seamount Fe-Mn crusts from the Pacific Ocean[J]. Marine Geology, 2020, 423: 106135. doi: 10.1016/j.margeo.2020.106135 [4] Gueguen B, Rouxel O, Fouquet Y. Nickel isotopes and rare earth elements systematics in marine hydrogenetic and hydrothermal ferromanganese deposits[J]. Chemical Geology, 2021, 560: 1−15. [5] Goto K T, Nozaki T, Toyofuku T, et al. Paleoceanographic conditions on the São Paulo Ridge, SW Atlantic Ocean, for the past 30 million years inferred from Os and Pb isotopes of a hydrogenous ferromanganese crust[J]. Deep-Sea Research II: Topical Studies in Oceanography, 2017, 146: 82−92. doi: 10.1016/j.dsr2.2016.10.010 [6] Josso P, Parkinson I, Horstwood M, et al. Improving confidence in ferromanganese crust age models: a composite geochemical approach[J]. Chemical Geology, 2019, 513: 108−119. doi: 10.1016/j.chemgeo.2019.03.003 [7] Konstantinova N, Hein J R, Mizell K, et al. Changes in sediment source areas to the Amerasia Basin, Arctic Ocean, over the past 5.5 million years based on radiogenic isotopes (Sr, Nd, Pb) of detritus from ferromanganese crusts[J]. Marine Geology, 2020, 428: 1−13. [8] Gueguen B, Rouxel O, Rouget M L, et al. Comparative geochemistry of four ferromanganese crusts from the Pacific Ocean and significance for the use of Ni isotopes as paleoceanographic tracers[J]. Geochimica et Cosmochimica Acta, 2016, 189: 214−235. doi: 10.1016/j.gca.2016.06.005 [9] Zawadzki D, Maciąg Ł, Kotliński R A, et al. Geochemistry of cobalt-rich ferromanganese crusts from the Perth Abyssal Plain (E Indian Ocean)[J]. Ore Geology Reviews, 2018, 101: 520−531. doi: 10.1016/j.oregeorev.2018.08.004 [10] Josso P, Rushton J, Lusty P, et al. Late cretaceous and cenozoic paleoceanography from north-east Atlantic ferromanganese crust microstratigraphy[J]. Marine Geology, 2020, 422: 106122. doi: 10.1016/j.margeo.2020.106122 [11] Novikov G V, Mel’nikov M E, Bogdanova O Y, et al. Nature of Co-bearing ferromanganese crusts of the magellan seamounts (Pacific Ocean): communication 1: geology, mineralogy, and geochemistry[J]. Lithology and Mineral Resources, 2014, 49(1): 1−22. doi: 10.1134/S0024490213060072 [12] Halbach P E, Jahn A, Cherkashov G. Marine Co-rich ferromanganese crust deposits: description and formation, occurrences and distribution, estimated world-wide resources[J]. Deep-Sea Mining, 2017: 65−141. [13] Astakhova N V. Noble metals in ferromanganese crusts from marginal seas of the Northwest Pacific[J]. Oceanology, 2017, 57(4): 558−567. doi: 10.1134/S0001437017040014 [14] Azami K, Hirano N, Machida S, et al. Rare earth elements and yttrium (REY) variability with water depth in hydrogenetic ferromanganese crusts[J]. Chemical Geology, 2018, 493: 224−233. doi: 10.1016/j.chemgeo.2018.05.045 [15] Lankalapalli S P, Ray D, Bejugam N N, et al. Anomalous phase association of REE in ferromanganese crusts from Indian mid-oceanic ridges: Evidence for large scale dispersion of hydrothermal iron[J]. Chemical Geology, 2020, 549: 119679. doi: 10.1016/j.chemgeo.2020.119679 [16] Mikhailik P E, Mikhailik E V, Zarubina N V, et al. Distribution of rare-earth elements and yttrium in hydrothermal sedimentary ferromanganese crusts of the Sea of Japan (from phase analysis results)[J]. Russian Geology and Geophysics, 2017, 58(12): 1530−1542. doi: 10.1016/j.rgg.2017.11.013 [17] Mohwinkel D, Kleint C, Koschinsky A. Phase associations and potential selective extraction methods for selected high-tech metals from ferromanganese nodules and crusts with siderophores[J]. Applied Geochemistry, 2014, 43: 13−21. doi: 10.1016/j.apgeochem.2014.01.010 [18] Khanchuk A I, Mikhailik P E, Mikhailik E V, et al. Peculiarities of the distribution of rare-earth elements and yttrium in mineral phases of the ferromanganese crusts from the Detroit Guyot (Pacific Ocean)[J]. Doklady Earth Sciences, 2015, 465(2): 1243−1247. doi: 10.1134/S1028334X15120016 [19] Koschinsky A, Hein J R, Kraemer D, et al. Platinum enrichment and phase associations in marine ferromanganese crusts and nodules based on a multi-method approach[J]. Chemical Geology, 2020, 539: 1−19. [20] Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources[J]. Ore Geology Reviews, 2013, 51: 1−14. doi: 10.1016/j.oregeorev.2012.12.001 [21] Qi Liang, Zhou Meifu, Wang C Y, et al. Evaluation of a technique for determining Re and PGEs in geological samples by ICP-MS coupled with a modified Carius tube digestion[J]. Geochemical Journal, 2007, 41(6): 407−414. doi: 10.2343/geochemj.41.407 [22] Qi Liang, Zhou Meifu, Wang C Y. Determination of low concentrations of platinum group elements in geological samples by ID-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2004, 19(10): 1335−1339. doi: 10.1039/b400742e [23] Koschinsky A, Hein J R. Uptake of elements from seawater by ferromanganese crusts: Solid-phase associations and seawater speciation[J]. Marine Geology, 2003, 198(3/4): 331−351. [24] 高晶晶, 刘季花, 李先国, 等. 富钴结壳中稀土元素化学相态分析方法及其应用[J]. 分析化学, 2015, 43(12): 1895−1900. doi: 10.11895/j.issn.0253-3820.150418Gao Jingjing, Liu Jihua, Li Xianguo, et al. Chemical phase analysis of rare earth elements in cobalt-rich crusts and its application[J]. Chinese Journal of Analytical Chemistry, 2015, 43(12): 1895−1900. doi: 10.11895/j.issn.0253-3820.150418 [25] 高晶晶, 刘季花, 张辉, 等. 太平洋海山富钴结壳中铂族元素赋存状态与富集机理[J]. 海洋学报, 2019, 41(8): 115−124.Gao Jingjing, Liu Jihua, Zhang Hui, et al. Occurrence phase and enrichment mechanism of platinum group elements in the Pacific cobalt-rich crusts[J]. Haiyang Xuebao, 2019, 41(8): 115−124. [26] 何高文, 孙晓明, 杨胜雄, 等. 太平洋多金属结核和富钴结壳稀土元素地球化学对比及其地质意义[J]. 中国地质, 2011, 38(2): 462−472. doi: 10.3969/j.issn.1000-3657.2011.02.020He Gaowen, Sun Xiaoming, Yang Shengxiong, et al. A comparison of REE geochemistry between polymetallic nodules and cobaltrich crusts in the Pacific Ocean[J]. Geology in China, 2011, 38(2): 462−472. doi: 10.3969/j.issn.1000-3657.2011.02.020 [27] 王中刚, 于学元, 赵振华, 等. 稀土元素地球化学[M]. 北京: 科学出版社, 1989: 1-535.Wang Zhonggang, Yu Xueyuan, Zhao Zhenhua, et al. Rare Earth Elements Geochemistry[M]. Beijing: Science Press, 1989: 1−535. [28] McDonough W F, Sun S S. The composition of the Earth[J]. Chemical Geology, 1995, 120(3/4): 223−253. [29] Koschinsky A, Stascheit I, Bau M, et al. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts[J]. Geochimica et Cosmochimica Acta, 1997, 61(19): 4079−4094. doi: 10.1016/S0016-7037(97)00231-7 [30] Koschinsky A, Halbach P. Sequential leaching of marine ferromanganese precipitates: Genetic implications[J]. Geochimica et Cosmochimica Acta, 1995, 59: 5113−5132. doi: 10.1016/0016-7037(95)00358-4 [31] Pan Jiahua, De Carlo E H, Yang Yi, et al. Effect of phosphatization on element concentration of cobalt-rich ferromanganese crusts[J]. Acta Geologica Sinica, 2005, 79(3): 349−355. doi: 10.1111/j.1755-6724.2005.tb00900.x [32] 任向文, 石学法, 朱爱美, 等. 麦哲伦海山群MK海山富钴结壳稀土元素的赋存相态[J]. 吉林大学学报(地球科学版), 2011, 41(3): 707−714.Ren Xiangwen, Shi Xuefa, Zhu Aimei, et al. Existing phase of rare earth elements in Co-rich Fe-Mn crusts from seamount MK of Magellan seamount cluster[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(3): 707−714. [33] Bau M, Koschinsky A. Oxidative scavenging of cerium on hydrous Fe oxide: evidence from the distribution of rare earth elements and yttrium between Fe oxides and Mn oxides in hydrogenetic ferromanganese crusts[J]. Geochemical Journal, 2009, 43(1): 37−47. doi: 10.2343/geochemj.1.0005 [34] Jiang Xuejun, Lin Xiehui, Yao De, et al. Enrichment mechanisms of rare earth elements in marine hydrogenic ferromanganese crusts[J]. Science China Earth Sciences, 2011, 54(2): 197−203. doi: 10.1007/s11430-010-4070-4 [35] Hein J R, Kosschinsky A, Bau M, et al. Cobalt-rich Ferromanganese crusts in the Pacific[M]//Cronan D S. Handbook of Marine Mineral Deposits. Boca Raton, Florida: CRC Press, 2000: 239−279. [36] Hein J R. Cobalt-rich ferromanganese crusts: global distribution, composition, origin and research activities[C]//Minerals Other than Polymetallic Nodules of the International Seabed Area. Kingston Jamaica: International Seabed Authority, 2004: 188−256. [37] Hein J R, Spinardi F, Okamoto N, et al. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions[J]. Ore Geology Reviews, 2015, 68: 97−116. doi: 10.1016/j.oregeorev.2014.12.011 [38] Bau M, Schmidt K, Koschinsky A, et al. Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium[J]. Chemical Geology, 2014, 381: 1−9. doi: 10.1016/j.chemgeo.2014.05.004 [39] 杨胜雄, 龙晓军, 祁奇, 等. 西太平洋富钴结壳矿物学和地球化学特征——以麦哲伦海山和马尔库斯-威克海山富钴结壳为例[J]. 中国海洋大学学报, 2016, 46(2): 105−116.Yang Shengxiong, Long Xiaojun, Qi Qi, et al. The mineralogical and geochemical characteristics of co-rich crusts from the western Pacific: taking the Co-rich crusts from Magellan and Marcus-wake seamounts as an example[J]. Periodical of Ocean University of China, 2016, 46(2): 105−116. [40] 任江波, 何高文, 姚会强, 等. 西太平洋海山富钴结壳的稀土和铂族元素特征及其意义[J]. 地球科学, 2016, 41(10): 1745−1757.Ren Jiangbo, He Gaowen, Yao Huiqiang, et al. Geochemistry and significance of REE and PGE of the cobalt-rich crusts from west Pacific Ocean seamounts[J]. Earth Science, 2016, 41(10): 1745−1757. [41] 何高文, 孙晓明, 杨胜雄, 等. 东太平洋CC区多金属结核铂族元素(PGE)地球化学及其意义[J]. 矿床地质, 2006, 25(2): 164−174. doi: 10.3969/j.issn.0258-7106.2006.02.006He Gaowen, Sun Xiaoming, Yang Shengxiong, et al. Platinum group elements (PGE) geochemistry of polymetallic nodules in CC zone, east Pacific Ocean[J]. Mineral Deposits, 2006, 25(2): 164−174. doi: 10.3969/j.issn.0258-7106.2006.02.006 [42] Halbach P, Kriete C, Prause B, et al. Mechanisms to explain the platinum concentration in ferromanganese seamount crusts[J]. Chemical Geology, 1989, 76(1/2): 95−106. [43] 孙晓明, 薛婷, 何高文, 等. 太平洋海山富钴结壳铂族元素(PGE)和Os同位素地球化学及其成因意义[J]. 岩石学报, 2006, 22(12): 3014−3026. doi: 10.3321/j.issn:1000-0569.2006.12.017Sun Xiaoming, Xue Ting, He Gaowen, et al. Platinum group elements (PGE) and Os isotopic geochemistry of ferromanganese crusts from Pacific Ocean seamounts and their constraints on genesis[J]. Acta Petrologica Sinica, 2006, 22(12): 3014−3026. doi: 10.3321/j.issn:1000-0569.2006.12.017 [44] 卜文瑞. 太平洋富钴结壳稀有气体地球化学特征及其成矿指示意义[D]. 青岛: 中国科学院海洋研究所, 2008: 1-164.Bu Wenrui. Noble gas geochemistry of ferromanganese crusts from Pacific Ocean and their significations for the formation of crusts[D]. Qingdao: The Institute of Oceanology, Chinese Academy of Sciences, 2008: 1−164.