留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热带气旋下海浪对大气向海洋输入的动量和能量的影响

李向一 刘国强 何宜军 WilliamPerrie

李向一,刘国强,何宜军,等. 热带气旋下海浪对大气向海洋输入的动量和能量的影响[J]. 海洋学报,2021,x(x):1–9 doi: 10.12284/hyxb2021174
引用本文: 李向一,刘国强,何宜军,等. 热带气旋下海浪对大气向海洋输入的动量和能量的影响[J]. 海洋学报,2021,x(x):1–9 doi: 10.12284/hyxb2021174
Li Xiangyi,Liu Guoqiang,He Yijun, et al. Impacts of ocean waves on the momentum and energy fluxes across the air-sea interface under tropical cyclones[J]. Haiyang Xuebao,2021, x(x):1–9 doi: 10.12284/hyxb2021174
Citation: Li Xiangyi,Liu Guoqiang,He Yijun, et al. Impacts of ocean waves on the momentum and energy fluxes across the air-sea interface under tropical cyclones[J]. Haiyang Xuebao,2021, x(x):1–9 doi: 10.12284/hyxb2021174

热带气旋下海浪对大气向海洋输入的动量和能量的影响

doi: 10.12284/hyxb2021174
基金项目: 国家自然科学基金(41506028);江苏省青年科学基金(BK20150913);国家重点基础研究发展计划项目(2016YFC1401407);全球变化与海气相互作用专项项目(GASI-IPOVAI-04);南京信息工程大学人才启动基金
详细信息
    作者简介:

    李向一(1995-),女,河南省驻马店市人,研究方向为热带气旋及海气相互作用。E-mail:lxylz5@163.com

    通讯作者:

    刘国强,教授,研究方向为大气-海浪-海洋-冰边界层动力与耦合模式开发与应用、次中尺度过程、上层海洋动力过程。E-mail:Guoqiang.Liu@dfo-mpo.gc.ca

Impacts of ocean waves on the momentum and energy fluxes across the air-sea interface under tropical cyclones

  • 摘要: 海浪不仅决定着海洋表面的粗糙度,由热带气旋引起的海浪,还通过其发展演化控制着大部分的海气之间的动量和能量传递。本文采用热带气旋观测数据IBTrACS和海浪模式WW Ⅲ的模拟结果探究了热带气旋下海浪对大气向海洋输入的动量和能量的影响。结果发现,近30 a热带气旋的强度约每10 a增加1 m/s,但移速没有明显变化。热带气旋的强度越大,从大气输入到海浪和从海浪输入到海流中的动量之差和能量之差也越大。由于热带气旋的风场和海浪场都有较强的不对称性,海气动量差和能量差也表现出非均匀分布:动量差较大的区域在热带气旋移动方向的后方,能量差的最大值则分布在右后象限,且二者均为左前方比较小。逆波龄与动量差和能量差呈高度正相关,相关系数约为0.95,说明波越年轻吸收的动量和能量越多。气旋移速越快逆波龄越大,且热带气旋移动速度与动量差和能量差呈正相关,相关系数在0.8以上。因此,海浪影响着大气向海洋输入的动量和能量的分布和大小,在以后关于海洋边界动力学和热力学的研究中,考虑海浪的演化可能会使结果更加准确。
  • 图  1  1990−2018年全球热带气旋分布

    Fig.  1  Horizontal distribution of the tropical cyclones during 1990−2018

    图  2  WW Ⅲ模式模拟2018年9月14日5时台风“山竹”附近海域的有效波高

    右上角图为将热带气旋$5{R_{\max }}$范围内的有效波高;黑色箭头为风矢量;红色点线为“山竹”在不同时刻的移动轨迹;台风中心附近黑色圆实线分别为${R_{\max }}$、$3{R_{\max }}$和$5{R_{\max }}$的位置

    Fig.  2  Spatial distribution of significant wave height from WW Ⅲ model near typhoon Mangkhut at 5:00 on September 14, 2018

    The upper right picture shows the significant wave height within $5{R_{\max }}$; the black arrows indicate wind vector; the red line is Mangkhut track at different moments; the black lines near typhoon are the positions of ${R_{\max }}$, $3{R_{\max }}$ and $5{R_{\max }}$

    图  3  1990-2018年全球台风出现的数量(a)、强度(b)和移动速度(c)的时间序列

    Fig.  3  Time series of number (a), intensity (b) and translation speed (c) of global typhoons during 1990-2018

    图  4  不同强度热带气旋海气动量差${\tau _{diff}}$的分布

    a. 强度为$20 \leqslant {V_{\max }} < 30\;m/s$;b. 强度为$30 \leqslant {V_{\max }} < 40\;m/s$;c. 强度为${V_{\max }} \geqslant 40\;m/s$;黑色箭头为气旋移动方向,数值表示每个象限内${\tau _{diff}}$的最大值;黑色圆实线分别为${R_{\max }}$、3${R_{\max }}$和5${R_{\max }}$的位置

    Fig.  4  Spatial distribution of momentum difference ${\tau _{diff}}$ under tropical cyclones of differences intensity

    a. $20 \leqslant {V_{\max }} < 30\;m/s$; b. $30 \leqslant {V_{\max }} < 40\;m/s$; c. ${V_{\max }} \geqslant 40\;m/s$; the black arrows indicate the translation direction of the cyclones; the values represent the maximum ${\tau _{diff}}$ in each quadrant; the black lines are the positions of ${R_{\max }}$, 3${R_{\max }}$ and 5${R_{\max }}$

    图  5  不同强度热带气旋能量差$E{F_{diff}}$的分布

    a. 强度为$20 \leqslant {V_{\max }} < 30\;m/s$;b. 强度为$30 \leqslant {V_{\max }} < 40\;m/s$;c. 强度为${V_{\max }} \geqslant 40\;m/s$;黑色箭头为气旋移动方向,数值表示每个象限内$E{F_{diff}}$的最大值;黑色圆实线分别为${R_{\max }}$、3${R_{\max }}$和5${R_{\max }}$的位置

    Fig.  5  Spatial distribution of momentum difference $E{F_{diff}}$ under tropical cyclones of differences intensity

    a. $20 \leqslant {V_{\max }} < 30\;m/s$; b. $30 \leqslant {V_{\max }} < 40\;m/s$; c. ${V_{\max }} \geqslant 40\;m/s$; the black arrows indicate the translation direction of the cyclones; the values represent the maximum $E{F_{diff}}$ in each quadrant; the black lines are the positions of ${R_{\max }}$, 3${R_{\max }}$ and 5${R_{\max }}$

    图  6  不同强度的热带气旋下逆波龄与海气动量差${\tau _{diff}}$(a)和海气能量差$E{F_{diff}}$(b)的关系

    Fig.  6  The relationship between inverse wave age and momentum difference ${\tau _{diff}}$ (a), energy difference $E{F_{diff}}$ (b) under tropical cyclones of different intensity

    图  7  热带气旋移动速度与海气动量差${\tau _{diff}}$(a)和海气能量差$E{F_{diff}}$(b)的关系

    Fig.  7  The relationship between tropical cyclone translation speed (a) and momentum difference ${\tau _{diff}}$(b), energy difference $E{F_{diff}}$

    图  8  不同强度的热带气旋下移动速度与逆波龄的关系

    Fig.  8  The relationship between translation speed and inverse wave age under tropical cyclones of different intensity

  • [1] 丁亚梅, 毛科峰, 萧中乐, 等. 台风条件下朗缪尔环流对上层海洋混合的影响研究进展[J]. 海洋学报, 2018, 40(1): 1−9.

    Ding Yamei, Mao Kefeng, Xiao Zhongle, et al. Progress in the impacts of Langmuir Circulation in upper ocean mixing under typhoon condition[J]. Haiyang Xuebao, 2018, 40(1): 1−9.
    [2] 管长龙, 张文清, 朱冬琳, 等. 上层海洋中浪致混合研究评述——研究进展及存在问题[J]. 中国海洋大学学报, 2014, 44(10): 20−24.

    Guan Changlong, Zhang Wenqing, Zhu Donglin, et al. Review of research on surface wave induced mixing in upper ocean layer: progress and existing problems[J]. Periodical of Ocean University of China, 2014, 44(10): 20−24.
    [3] Komen G J, Cavaleri L, Donelan M, et al. Dynamics and modelling of ocean waves[J]. Dynamics of Atmospheres & Oceans, 1994, 25(4): 276−278.
    [4] Mellor G L, Donelan M A, Oey L Y. A surface wave model for coupling with numerical ocean circulation models[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(10): 1785−1807. doi: 10.1175/2008JTECHO573.1
    [5] 王平, 陈葆德, 曾智华. 海洋飞沫对热带气旋边界层结构的影响[J]. 海洋学报, 2014, 36(9): 84−93.

    Wang Ping, Chen Baode, Zeng Zhihua. Effect of sea spray on tropical cyclone boundary layer structure[J]. Haiyang Xuebao, 2014, 36(9): 84−93.
    [6] Donelan M A, Curcic M, Chen S S, et al. Modeling waves and wind stress[J]. Journal of Geophysical Research Oceans, 2012, 117(C11): C00J23.
    [7] Dobson F W. Measurements of atmospheric pressure on wind-generated sea waves[J]. Journal of Fluid Mechanics, 1971, 48(1): 91−127. doi: 10.1017/S0022112071001496
    [8] Donelan M A. Air-water exchange processes[M]//Imberger J. Physical Processes in Lakes and Oceans. Washington: American Geophysical Union (AGU), 1998.
    [9] Snyder R L, Dobson F W, Elliott J A, et al. Array measurements of atmospheric pressure fluctuations above surface gravity waves[J]. Journal of Fluid Mechanics, 1981, 102: 1−59. doi: 10.1017/S0022112081002528
    [10] Schlichting H. Boundary-Layer Theory[M]. Kestin J, trans. 7th ed. New York: McGraw-Hill, 1979.
    [11] Ardhuin F, Chapron B, Elfouhaily T. Waves and the air–sea momentum budget: implications for ocean circulation modeling[J]. Journal of Physical Oceanography, 2004, 34(7): 1741−1755. doi: 10.1175/1520-0485(2004)034<1741:WATAMB>2.0.CO;2
    [12] Janssen P A E M. Ocean wave effects on the daily cycle in SST[J]. Journal of Geophysical Research: Oceans, 2012, 117(C11): C00J32.
    [13] Liu Guoqiang, Perrie W, Hughes C. Surface wave effects on the wind-power input to mixed layer near-inertial motions[J]. Journal of Physical Oceanography, 2017, 47(5): 1077−1093. doi: 10.1175/JPO-D-16-0198.1
    [14] Fan Yalin, Ginis I, Hara T. The effect of wind-wave-current interaction on air-sea momentum fluxes and ocean response in tropical cyclones[J]. Journal of Physical Oceanography, 2009, 39(4): 1019−1034. doi: 10.1175/2008JPO4066.1
    [15] Wright C W, Walsh E J, Vandemark D, et al. Hurricane directional wave spectrum spatial variation in the open ocean[J]. Journal of Physical Oceanography, 2001, 31(8): 2472−2488. doi: 10.1175/1520-0485(2001)031<2472:HDWSSV>2.0.CO;2
    [16] Walsh E J, Wright C W, Vandemark D, et al. Hurricane directional wave spectrum spatial variation at landfall[J]. Journal of Physical Oceanography, 2002, 32(6): 1667−1684. doi: 10.1175/1520-0485(2002)032<1667:HDWSSV>2.0.CO;2
    [17] Fan Yalin, Ginis I, Hara T. Momentum flux budget across the air–sea interface under uniform and tropical cyclone winds[J]. Journal of Physical Oceanography, 2010, 40(10): 2221−2242. doi: 10.1175/2010JPO4299.1
    [18] Curcic M. Explicit air-sea momentum exchange in coupled atmosphere-wave-ocean modeling of tropical cyclones[D]. Coral Gables: University of Miami, 2015.
    [19] Drennan W M, Kahma K K, Donelan M A. On momentum flux and velocity spectra over waves[J]. Boundary-Layer Meteorology, 1999, 92(3): 489−515. doi: 10.1023/A:1002054820455
    [20] Grachev A A, Fairall C W. Upward momentum transfer in the marine boundary layer[J]. Journal of Physical Oceanography, 2001, 31(7): 1698−1711. doi: 10.1175/1520-0485(2001)031<1698:UMTITM>2.0.CO;2
    [21] Smedman A, Högström U, Bergström H, et al. A case study of air-sea interaction during swell conditions[J]. Journal of Geophysical Research Oceans, 1999, 104(C11): 25833−25851. doi: 10.1029/1999JC900213
    [22] Knapp K R, Kruk M C, Levinson D H, et al. The international best track archive for climate stewardship (IBTrACS)[J]. Bulletin of the American Meteorological Society, 2010, 91(3): 363−376. doi: 10.1175/2009BAMS2755.1
    [23] Rascle N, Ardhuin F. A global wave parameter database for geophysical applications. part 2: model validation with improved source term parameterization[J]. Ocean Modelling, 2013, 70: 174−188. doi: 10.1016/j.ocemod.2012.12.001
    [24] Kossin J P, Olander T L, Knapp K R. Trend analysis with a new global record of tropical cyclone intensity[J]. Journal of Climate, 2013, 26(24): 9960−9976. doi: 10.1175/JCLI-D-13-00262.1
    [25] Mei Wei, Xie Shangping. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s[J]. Nature Geoscience, 2016, 9(10): 753−757. doi: 10.1038/ngeo2792
    [26] 蔡晓杰, 姜华, 王辉, 等. 西北太平洋热带气旋与上层海洋热含量的关系[J]. 海洋学报, 2013, 35(3): 28−35.

    Cai Xiaojie, Jiang Hua, Wang Hui, et al. The relationship between tropical cyclone in the northwest Pacific and upper ocean heat content[J]. Haiyang Xuebao, 2013, 35(3): 28−35.
    [27] Kossin J P. A global slowdown of tropical-cyclone translation speed[J]. Nature, 2018, 558(7708): 104−107. doi: 10.1038/s41586-018-0158-3
    [28] Zhang Lin, Oey L. Young ocean waves favor the rapid intensification of tropical cyclones—a global observational analysis[J]. Monthly Weather Review, 2019, 147(1): 311−328. doi: 10.1175/MWR-D-18-0214.1
    [29] Zhang Lin, Oey L. An observational analysis of ocean surface waves in tropical cyclones in the western north Pacific Ocean[J]. Journal of Geophysical Research Oceans, 2019, 124(1): 184−195. doi: 10.1029/2018JC014517
    [30] Bowyer P J, MacAfee A W. The theory of trapped-fetch waves with tropical cyclones—an operational perspective[J]. Weather and Forecasting, 2005, 20(3): 229−244. doi: 10.1175/WAF849.1
    [31] 方钟圣, 金承仪. 日本浮标站台风浪波高与风速等参数的统计分析[J]. 船舶力学, 2003, 7(5): 1−10. doi: 10.3969/j.issn.1007-7294.2003.05.001

    Fang Zhongsheng, Jin Chengyi. Statistical analysis on wave height, wind speed and other parameters due to tropical cyclones in the Northwest Pacific area[J]. Journal of Ship Mechanics, 2003, 7(5): 1−10. doi: 10.3969/j.issn.1007-7294.2003.05.001
    [32] Chang Yuchia, Tseng R S, Chu P C, et al. Observed strong currents under global tropical cyclones[J]. Journal of Marine Systems, 2016, 159: 33−40. doi: 10.1016/j.jmarsys.2016.03.001
    [33] Tamizi A, Young I R. The spatial distribution of ocean waves in tropical cyclones[J]. Journal of Physical Oceanography, 2020, 50(8): 2123−2139. doi: 10.1175/JPO-D-20-0020.1
    [34] Ardhuin F, Jenkins A D. On the interaction of surface waves and upper ocean turbulence[J]. Journal of Physical Oceanography, 2006, 36(3): 551−557. doi: 10.1175/JPO2862.1
    [35] Hanley K E, Belcher S E, Sullivan P P. A global climatology of wind–wave interaction[J]. Journal of Physical Oceanography, 2010, 40(6): 1263−1282. doi: 10.1175/2010JPO4377.1
    [36] Xie Lian, Bao Shaowu, Pietrafesa L J, et al. A real-time hurricane surface wind forecasting model: formulation and verification[J]. Monthly Weather Review, 2006, 134(5): 1355−1370. doi: 10.1175/MWR3126.1
  • 加载中
图(8)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  1
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-08-25

目录

    /

    返回文章
    返回