留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFOSAT微波散射计风场反演残差特性研究

王冰花 董晓龙 林文明 郎姝燕 朱迪 云日升

王冰花,董晓龙,林文明,等. CFOSAT微波散射计风场反演残差特性研究[J]. 海洋学报,2021,43(x):1–9 doi: 10.12284/hyxb2021164
引用本文: 王冰花,董晓龙,林文明,等. CFOSAT微波散射计风场反演残差特性研究[J]. 海洋学报,2021,43(x):1–9 doi: 10.12284/hyxb2021164
Wang Binghua,Dong Xiaolong,Lin Wenming, et al. On the inversion characteristics of CFOSAT wind scatterometer[J]. Haiyang Xuebao,2021, 43(x):1–9 doi: 10.12284/hyxb2021164
Citation: Wang Binghua,Dong Xiaolong,Lin Wenming, et al. On the inversion characteristics of CFOSAT wind scatterometer[J]. Haiyang Xuebao,2021, 43(x):1–9 doi: 10.12284/hyxb2021164

CFOSAT微波散射计风场反演残差特性研究

doi: 10.12284/hyxb2021164
基金项目: 十二五”海洋观测卫星地面系统CFOSAT散射计预处理课题(Y7C01KAJ10)
详细信息
    作者简介:

    王冰花(1996-),女,河南省商丘市人,主要从事CFOSAT风场反演研究。E-mail:wangbinghua18@mails.ucas.ac.cn

    通讯作者:

    董晓龙,研究员,主要从事微波(包括毫米波、亚毫米波)遥感成像与探测的理论与方法及先进微波遥感器系统研究。E-mail:dongxiaolong@mirslab.cn

On the inversion characteristics of CFOSAT wind scatterometer

  • 摘要: 2018年10月发射的中法海洋卫星散射计(CSCAT)是国际上首个扇形波束旋转扫描微波散射计。本文以最大似然估计风场反演算法为基线,详细分析了中法海洋卫星微波散射计海面风场反演代价函数的残差特性,重点研究了新的观测几何对风场反演残差以及风场质量的影响,并建立了风场模糊解的似然概率模型函数。结果表明,CSCAT风场反演的残差特性随风矢量单元在刈幅交轨方向位置的变化而变化,模糊解似然概率模型函数的指数分布在−1到−9之间。分析结果为CSCAT风场质量控制和二维变分分析去模糊算法的精细化调整提供了重要的参考。
  • 图  1  CSCAT风场反演流程图

    Fig.  1  Wind retrieval flow chart of CSCAT.

    图  2  CSCAT散射计观测几何示意图

    Fig.  2  Observation geometry of CSCAT.

    图  3  CSCAT地面风单元划分

    Fig.  3  CSCAT ground wind vector cell meshing

    图  4  MLE风场反演示意图

    Fig.  4  Example of MLE wind inversion

    图  5  平均MLE(a)和MLE标准差(b)随风速和WVC列数变化的示意图

    Fig.  5  Mean MLE versus wind speed and WVC number (a) and MLE STD versus wind speed and WVC number (b)

    图  6  CSCAT风速风向相对于ECMWF风速风向的偏差随平均MLE变化的曲线

    a. 为风速偏差;b. 为风向偏差;不同线型的曲线表示不同的WVC列数

    Fig.  6  Statistics of CSCAT winds versus ECMWF winds as a function of the mean MLE of CSCAT

    a. Biases of wind speed; b. biases of wind direction; lines in different styles are for different WVC number (see the legend)

    图  7  CSCAT风速风向相对于ECMWF风速风向的标准差随平均MLE变化的曲线

    a. 为风速标准差;b. 风向标准差;不同线型的曲线表示不同的WVC列数

    Fig.  7  Statistics of CSCAT winds versus ECMWF winds as a function of the mean MLE of CSCAT

    a. STD of wind speed differences; b. STD of wind direction differences; lines in different styles are for different WVC number (see the legend)

    图  8  不同节点下$ {Rn}_{2}-{Rn}_{1} $$ P\left({Rn}_{2}\right)/P\left({Rn}_{1}\right) $ 函数关系的指数拟合($ {Rn}_{1} $=0.1)

    Fig.  8  The exponential fit to ratio $ {Rn}_{2} $ and $ {Rn}_{1} $ as a founction of $ {Rn}_{2}-{Rn}_{1} $ for different WVC number($ {Rn}_{1} $=0.1)

    图  9  不同Rn1取值下$ P\left({Rn}_{2}\right)/P\left({Rn}_{1}\right) $$ {Rn}_{2}-{Rn}_{1} $函数关系的指数拟合(第8列WVC)

    Fig.  9  The exponential fit to ratio of $ {Rn}_{2} $ and $ {Rn}_{1} $ as a founction of $ {Rn}_{2}-{Rn}_{1} $ for different $ {Rn}_{1} $ (WVC number 8)

    图  10  $ {Rn}_{1} $分布直方图

    Fig.  10  The distribution histogram of $ {Rn}_{1} $

    图  11  概率模型指数及系数随节点的变化

    Fig.  11  The exponents and coefficients of the probabilistic model versus node number

    图  12  标准的概率模型函数反演的CSCAT风场与浮标测量风场的对比

    Fig.  12  CSCAT wind using the standard likelihood probability model function versus the buoy wind

    图  13  改进的概率模型函数反演的风场与浮标测量风场的对比

    Fig.  13  CSCAT wind using the improved likelihood probability model function versus the buoy wind

    表  1  预测概率/实际观测概率的分布对比(刈幅远端)

    Tab.  1  Predicted/observed distributions (far swath)

    2个模糊解3个模糊解4个模糊解所有模糊解
    风单元个数267 607117 849458 349472 138
    第1模糊解84/8182/7983/8083/80
    第2模糊解16/1913/1610/1314/17
    第3模糊解5/54/43/3
    第4模糊解3/30/0
      注:−代表未获得概率。
    下载: 导出CSV

    表  3  预测概率/实际观测概率的分布对比 (星下点区域)

    Tab.  3  Predicted/observed distributions (nadir swath)

    2个模糊解3个模糊解4个模糊解所有模糊解
    风单元个数162 112144 37340 206346 691
    第1模糊解78/7856/6648/5665/71
    第2模糊解22/2228/2223/2125/22
    第3模糊解16/1217/139/6
    第4模糊解12/101/1
      注:−代表未获得概率。
    下载: 导出CSV

    表  2  预测概率/实际观测概率的分布对比(刈幅中间区域)

    Tab.  2  Predicted/observed distributions (sweet swath)

    2个模糊解3个模糊解4个模糊解所有模糊解
    风单元个数514 639345 693273 9841 134 316
    第1模糊解90/8878/8280/8384/85
    第2模糊解10/1216/1414/1313/13
    第3模糊解6/44/33/2
    第4模糊解2/10/0
      注:−代表未获得概率。
    下载: 导出CSV
  • [1] Liu W T. Progress in scatterometer application[J]. Journal of Oceanography, 2002, 58(1): 121−136. doi: 10.1023/A:1015832919110
    [2] 蒋兴伟, 林明森, 张有广, 等. 海洋遥感卫星及应用发展历程与趋势展望[J]. 卫星应用, 2018(5): 10−18. doi: 10.3969/j.issn.1674-9030.2018.05.005

    Jiang Xingwei, Lin Mingsen, Zhang Youguang, et al. Progress and trend of ocean remote sensing satellites and their applications[J]. Satellite Application, 2018(5): 10−18. doi: 10.3969/j.issn.1674-9030.2018.05.005
    [3] Lin Wenming, Portabella M. Toward an improved wind quality control for RapidScat[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3922−3930. doi: 10.1109/TGRS.2017.2683720
    [4] Stoffelen A, Anderson D. Scatterometer data interpretation: measurement space and inversion[J]. Journal of Atmospheric and Oceanic Technology, 1997, 14(6): 1298−1313. doi: 10.1175/1520-0426(1997)014<1298:SDIMSA>2.0.CO;2
    [5] Portabella M, Stoffelen A. Characterization of residual information for SeaWinds quality control[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(12): 2747−2759. doi: 10.1109/TGRS.2002.807750
    [6] De Vries J C W, Stoffelen A C M. 2D variational ambiguity removal[R]. Netherlands Remote Sensing Board (BCRS), Programme Bureau, Rijkswaterstaat Survey Department. 2000.
    [7] Liu Jianqiang, Lin Wenming, Dong Xiaolong, et al. First results from the rotating fan beam scatterometer onboard CFOSAT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8793−8806. doi: 10.1109/TGRS.2020.2990708
    [8] Stiles B W, Dunbar R S. A neural network technique for improving the accuracy of scatterometer winds in rainy conditions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8): 3114−3122. doi: 10.1109/TGRS.2010.2049362
    [9] Portabella M, Stoffelen A. A comparison of KNMI quality control and JPL rain flag for SeaWinds[J]. Canadian Journal of Remote Sensing, 2002, 28(3): 424−430. doi: 10.5589/m02-040
    [10] Lin Wenming, Dong Xiaolong, Portabella M, et al. A perspective on the performance of the CFOSAT rotating fan-beam scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 627−639. doi: 10.1109/TGRS.2018.2858852
    [11] 解学通, 方裕, 陈晓翔, 等. 基于最大似然估计的海面风场反演算法研究[J]. 地理与地理信息科学, 2005, 21(1): 30−33. doi: 10.3969/j.issn.1672-0504.2005.01.009

    Xie Xuetong, Fang Yu, Chen Xiaoxiang, et al. Research on numerical wind vector retrieval algorithm based on maximum likelihood estimation[J]. Geography and Geo-Information Science, 2005, 21(1): 30−33. doi: 10.3969/j.issn.1672-0504.2005.01.009
    [12] Stoffelen A, Portabella M. On Bayesian scatterometer wind inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1523−1533. doi: 10.1109/TGRS.2005.862502
    [13] Anderson C, Bonekamp H, Duff C. Analysis of ASCAT ocean backscatter measurement noise[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2449−2457. doi: 10.1109/TGRS.2012.2190739
    [14] Portabella M, Stoffelen A. A probabilistic approach for SeaWinds data assimilation[J]. Quarterly Journal of the Royal Meteorological Society, 2010, 130(596): 127−152.
    [15] Gohil B S, Sarkar A, Agarwal V K. A new algorithm for wind-vector retrieval from scatterometers[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3): 387−391. doi: 10.1109/LGRS.2008.917129
    [16] Portabella M, Stoffelen A. Rain detection and quality control of SeaWinds[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(7): 1171−1183. doi: 10.1175/1520-0426(2001)018<1171:RDAQCO>2.0.CO;2
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  15
  • HTML全文浏览量:  3
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-09
  • 修回日期:  2021-04-28
  • 网络出版日期:  2021-08-16

目录

    /

    返回文章
    返回