留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

街区尺度风暴潮漫滩数值模拟

张露 傅赐福 董剑希 于福江

张露,傅赐福,董剑希,等. 街区尺度风暴潮漫滩数值模拟[J]. 海洋学报,2021,43(10):1–12 doi: 10.12284/hyxb2021161
引用本文: 张露,傅赐福,董剑希,等. 街区尺度风暴潮漫滩数值模拟[J]. 海洋学报,2021,43(10):1–12 doi: 10.12284/hyxb2021161
Zhang Lu,Fu Cifu,Dong Jianxi, et al. Numerical simulation of storm surge inundation in block scale[J]. Haiyang Xuebao,2021, 43(10):1–12 doi: 10.12284/hyxb2021161
Citation: Zhang Lu,Fu Cifu,Dong Jianxi, et al. Numerical simulation of storm surge inundation in block scale[J]. Haiyang Xuebao,2021, 43(10):1–12 doi: 10.12284/hyxb2021161

街区尺度风暴潮漫滩数值模拟

doi: 10.12284/hyxb2021161
基金项目: 中国海业务化风暴潮数值预报系统关键技术研究与应用
详细信息
    作者简介:

    张露(1992—),女,山东省乳山市人,助理工程师,主要从事风暴潮漫滩研究。Email:ZLzhanglu1818@163.com

  • 中图分类号: P731.23

Numerical simulation of storm surge inundation in block scale

  • 摘要: 本文利用ADCIRC模型,在宁波市北仑区建立了街区尺度的风暴潮漫滩模型,北仑区陆地分辨率达5~10 m。模拟结果整体展现漫滩淹没城市街道建筑的过程,细致刻画了水流在街区和建筑错综复杂分布时的流动情况,以及不同建筑物附近水深的变化,比以往的漫滩模拟更加精细,体现街区尺度网格的优势。数值模拟结果表明:此模型可以较好地模拟1121号台风“海葵”和5612号台风“Wanda”的风暴潮过程。利用卫星遥感图像对北仑区地物进行分类,考虑下垫面底摩擦变化对漫滩模拟的影响。对比未考虑底摩擦情况的模拟实验结果,淹没面积减少了21.4%,大部分区域水深降低在0.1~0.2 m左右,街区尺度网格细致展示出不同地物所在区域的水深降低程度以及淹没面积变化。
  • 图  1  所选区域

    Fig.  1  Selected area

    图  2  高低层建筑的划分示意图

    Fig.  2  Division diagram of high and low buildings

    图  3  大洋所选网格区域(a)、北仑区附近海域(b)以及北仑区局部放大的陆地网格(c)

    Fig.  3  The selected grid of Ocean (a), the sea area near Beilun District (b) and the land grid magnified locally in Beilun District (c)

    图  4  大洋和北仑区附近海域水深分布

    Fig.  4  The distribution of water depth in the ocean and nearby seas of Beilun District

    图  5  陆地高程插值图

    Fig.  5  Interpolation map of land elevation

    图  6  1211号台风路径和验潮站分布图

    Fig.  6  Track of Typhoon 1211 and distribution of tide gauge stations

    图  7  镇海、吴淞、乍浦和定海站风暴潮实测值和模拟值对比

    Fig.  7  Comparison of measured and simulated storm surge values at Zhenhai,Wusong, Zhapu and Dinghai stations

    图  8  5612号台风路径图和验潮站位置分布

    Fig.  8  Track of Typhoon 5612 and location distribution of tide gauge stations

    图  9  镇海、吴淞、乍浦和高桥站风暴潮实测值与模拟值对比

    Fig.  9  Comparison of measured and simulated storm surge values at Zhenhai,Wusong, Zhapu and Gaoqiao stations

    图  10  甬江澄浪堰和姚江大闸径流边界位置分布

    Fig.  10  Runoff boundary location distribution map of Chenglang Weir on Yongjiang River and Yaojiang Gate

    图  11  镇海、吴淞、乍浦和高桥站总潮位实测值与模拟值对比

    Fig.  11  Comparison of measured and simulated total tide level at Zhenhai, Wusong, Zhapu and Gaoqiao stations

    图  12  5612号台风漫滩模拟的最大淹没范围

    Fig.  12  Maximum inundation area simulated by Typhoon 5612

    图  13  5612号台风漫滩过程三维图

    Fig.  13  Three-dimensional diagram of the inundation process of Typhoon 5612

    图  14  北仑区曼宁系数n示意图

    Fig.  14  Schematic diagram of Manning-n in Beilun District

    图  15  考虑下垫面底摩擦变化后,北仑区最大淹没范围

    Fig.  15  The maximum submerged area of Beilun District after considering the change of the underlying surface friction

    图  16  考虑下垫面底摩擦变化前后,北仑区最大淹没水深差值

    Fig.  16  Maximum submerged depth difference map in Beilun District before and after considering the underlying surface friction

    图  17  考虑下垫面底摩擦变化前后,淹没区域变化

    红色表示面积增加;蓝色表示面积减少

    Fig.  17  Before and after considering the change of the underlying surface friction, the change of the submerged area

    Red represents increased area; blue represents reduced area

    表  1  4个验潮站最大增水实测值和模拟值相对误差分析统计表(单位:m)

    Tab.  1  Statistical table of relative error analysis of the measured and simulated values of the maximum water increasing at 4 tide gauge stations (unit: m)

    站名镇海吴淞乍浦定海
    实测值1.671.53.031.55
    模拟值1.61.452.721.41
    相对误差4.2%3.3%10.2%9%
    下载: 导出CSV

    表  2  4个验潮站最大增水实测值与模拟值相对误差分析统计表(单位:m)

    Tab.  2  Statistical table of relative error analysis between the measured and simulated values of the maximum water increasing at 4 tide gauge stations (unit: m)

    站名镇海吴淞乍浦高桥
    实测值2.522.164.112.39
    模拟值2.752.444.342.52
    相对误差9.13%12.96%5.6%5.44%
    下载: 导出CSV

    表  3  7类地物的Manning-n设置

    Tab.  3  Manning-n settings for seven types of features

    等级21222331435183
    n0.1200.1210.0500.0400.1700.0700.035
    地物描述低密度居民区高密度居民区商业区裸露的岩石和沙地四季常青和随季节变化的两种森林的混合灌木丛农作物稀少地
    下载: 导出CSV
  • [1] 石先武, 谭骏, 国志兴, 等. 风暴潮灾害风险评估研究综述[J]. 地球科学进展, 2013, 28(8): 866−874. doi: 10.11867/j.issn.1001-8166.2013.08.0866

    Shi Xianwu, Tan Jun, Guo Zhixing, et al. A review of risk assessment of storm surge disaster[J]. Advances in Earth Science, 2013, 28(8): 866−874. doi: 10.11867/j.issn.1001-8166.2013.08.0866
    [2] 冯士筰. 风暴潮的研究进展[J]. 世界科技研究与发展, 1998, 20(4): 44−47.

    Feng Shizuo. The advance of researches on storm surges[J]. World Sci-Tech Research & Development, 1998, 20(4): 44−47.
    [3] 王喜年. 风暴潮预报知识讲座[J]. 海洋预报, 2001, 18(1): 73−78. doi: 10.3969/j.issn.1003-0239.2001.01.010

    Wang Xinian. Lectures on storm surge forecasting[J]. Marine Forecasts, 2001, 18(1): 73−78. doi: 10.3969/j.issn.1003-0239.2001.01.010
    [4] 郑国诞, 谢亚力, 胡金春, 等. 台州温岭市风暴潮淹没危险性分析[J]. 海洋预报, 2016, 33(6): 40−50. doi: 10.11737/j.issn.1003-0239.2016.06.005

    Zheng Guodan, Xie Yali, Hu Jinchun, et al. Inundation risk assessment of typhoon storm surge along Taizhou Wenling City[J]. Marine Forecasts, 2016, 33(6): 40−50. doi: 10.11737/j.issn.1003-0239.2016.06.005
    [5] 傅赐福, 于福江, 王培涛, 等. 滨海新区温带风暴潮灾害风险评估研究[J]. 海洋学报, 2013, 35(1): 55−62.

    Fu Cifu, Yu Fujiang, Wang Peitao, et al. A study on extratropical storm surge disaster risk assessment at Binhai New Area[J]. Haiyang Xuebao, 2013, 35(1): 55−62.
    [6] 李勇, 田立柱, 裴艳东, 等. 渤海湾西部风暴潮漫滩数值模拟[J]. 地质通报, 2016, 35(10): 1638−1645. doi: 10.3969/j.issn.1671-2552.2016.10.011

    Li Yong, Tian Lizhu, Pei Yandong, et al. Numerical simulation of storm surge inundation in the west zone of Bohai Bay[J]. Geological Bulletin of China, 2016, 35(10): 1638−1645. doi: 10.3969/j.issn.1671-2552.2016.10.011
    [7] Yang Jie, Li Linlin, Zhao Kuifeng, et al. A comparative study of Typhoon Hato (2017) and Typhoon Mangkhut (2018)—their impacts on coastal inundation in Macau[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 9590−9619. doi: 10.1029/2019JC015249
    [8] Luettich R A, Westerrink J J. ADCIRC user manual: A (Parallel) advanced circulation model for oceanic[R]. Coastal and Estuarine Waters, 2006.
    [9] Blain C A, Westerink J J, Luettich R A Jr. Grid convergence studies for the prediction of hurricane storm surge[J]. International Journal of Numerical Methods in Fluids, 1998, 26(4): 369−401. doi: 10.1002/(SICI)1097-0363(19980228)26:4<369::AID-FLD624>3.0.CO;2-0
    [10] 郑杰. 5612号台风增水过程的两种数值模拟方法比较[J]. 中国高新技术企业, 2011(19): 30−32.

    Zheng Jie. Comparison of two numerical simulation methods for the water increasing process of typhoon No. 5612[J]. China High-Tech Enterprises, 2011(19): 30−32.
    [11] 李文杰, 邵学强. 甬江流域入海径流量研究[J]. 浙江水利科技, 2007(3): 53−55, 59. doi: 10.3969/j.issn.1008-701X.2007.03.022

    Li Wenjie, Shao Xueqiang. Research on runoff amount into sea in Yongjiang River basin[J]. Zhejiang Hydrotechnics, 2007(3): 53−55, 59. doi: 10.3969/j.issn.1008-701X.2007.03.022
    [12] 任剑波, 施伟勇. 风拖曳力系数和曼宁系数对风暴潮流模拟的影响[J]. 人民长江, 2017, 48(18): 86−92.

    Ren Jianbo, Shi Weiyong. Influence of wind drag coefficient and Manning coefficient on storm current simulation[J]. Yangtze River, 2017, 48(18): 86−92.
    [13] Akbar M K, Kanjanda S, Musinguzi A. Effect of bottom friction, wind drag coefficient, and meteorological forcing in Hindcast of hurricane Rita storm surge using SWAN + ADCIRC model[J]. Journal of Marine Science and Engineering, 2017, 5(3): 38. doi: 10.3390/jmse5030038
    [14] Chu Dongdong, Zhang Jicai, Wu Yongsheng, et al. Sensitivities of modelling storm surge to bottom friction, wind drag coefficient, and meteorological product in the East China Sea[J]. Estuarine, Coastal and Shelf Science, 2019, 231: 106460. doi: 10.1016/j.ecss.2019.106460
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  13
  • HTML全文浏览量:  2
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-29
  • 修回日期:  2021-03-19
  • 网络出版日期:  2021-09-02

目录

    /

    返回文章
    返回