留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波浪作用下海床孔压累积过程离散元数值模拟

王岳 刘春 刘晓磊 刘辉 李亚沙

王岳,刘春,刘晓磊,等. 波浪作用下海床孔压累积过程离散元数值模拟[J]. 海洋学报,2021,x(x):1–8 doi: 10.12284/hyxb2021160
引用本文: 王岳,刘春,刘晓磊,等. 波浪作用下海床孔压累积过程离散元数值模拟[J]. 海洋学报,2021,x(x):1–8 doi: 10.12284/hyxb2021160
Wang Yue,Liu Chun,Liu Xiaolei, et al. Discrete element numerical simulation of the accumulation process of wave-induced pore water pressure in the seabed[J]. Haiyang Xuebao,2021, x(x):1–8 doi: 10.12284/hyxb2021160
Citation: Wang Yue,Liu Chun,Liu Xiaolei, et al. Discrete element numerical simulation of the accumulation process of wave-induced pore water pressure in the seabed[J]. Haiyang Xuebao,2021, x(x):1–8 doi: 10.12284/hyxb2021160

波浪作用下海床孔压累积过程离散元数值模拟

doi: 10.12284/hyxb2021160
基金项目: 国家自然科学基金项目(41977218,41761134089);青岛海洋科学与技术国家实验室开放基金项目(QNLM2016ORP0110)
详细信息
    作者简介:

    王岳(1996-),女,辽宁省大连市人,主要从事岩土体数值模拟研究。E-mail:mf1929029@smail.nju.edu.cn

    通讯作者:

    刘春,男,副教授,主要从事计算工程地质研究和教学工作。E-mail: chunliu@nju.edu.cn

  • 中图分类号: P731.2

Discrete element numerical simulation of the accumulation process of wave-induced pore water pressure in the seabed

  • 摘要: 海床土层在波浪的循环荷载作用下会逐渐累积孔压,降低土层的稳定性,并威胁海上工程。为了研究孔隙水压力的累积机制,提出离散元孔隙密度流方法,改进研发离散元分析软件MatDEM,实现了海床沉积物孔压的累积过程模拟。基于现场试验装置及土体力学参数建立离散元模型,通过对比试验和数值模拟结果发现:对海床沉积物施加波浪荷载后,表层土体中产生较高孔压,并逐渐向深层传递;在循环波浪荷载作用下,土颗粒间孔压累积范围逐渐增加;当孔压累积时间足够长时,土层中孔压收敛于所施加最大荷载与最小荷载的平均值,此时若孔压达到初始有效应力,土体发生液化,内部土颗粒成为再悬浮沉积物;在周期性波浪荷载作用下,土颗粒液化悬浮后发生移动,浅层颗粒位移量大,土体整体表现为圆弧形移动。
  • 图  1  离散颗粒堆积模型(a)、颗粒间法向弹簧力(b)和颗粒间切向弹簧力(c)

    Fig.  1  Packing model of discrete element (a), normal spring force between particles (b), and shear spring force between particles (c)

    图  2  离散元堆积颗粒(a)、孔隙流体域(b)和颗粒和孔隙系统(c)

    Fig.  2  Discrete element stacked particles (a), pore fluid domain(b), and particle and pore system (c)

    图  3  颗粒微观渗流示意图

    Fig.  3  Schematic diagram of particle microscopic seepage

    图  4  颗粒堆积模型

    Fig.  4  Particle accumulation model

    图  5  单周期荷载下孔隙水压力变化趋势图

    Fig.  5  Trend graph of pore water pressure under single-cycle loading

    图  6  荷载循环1、10、20、40次孔压分布图

    Fig.  6  Pore pressure distribution diagram of load cycle 1, 10, 20, 40 times

    图  7  循环荷载40次孔隙水压力累积

    Fig.  7  Diagram of pore water pressure accumulation process under cyclic loading 40 times

    图  8  孔压分布图

    Fig.  8  Pore pressure distribution diagram

    图  9  模拟10 s位移场图

    Fig.  9  Simulation of 10s displacement field diagram

    图  10  圆弧形移动示意图

    Fig.  10  Schematic diagram of circular arc movement

    表  1  材料宏观力学性质

    Tab.  1  Macro mechanical properties of materials

    力学性质测试值
    杨氏模量E/MPa5.00
    泊松比v0.14
    抗拉强度Tu/kPa1.00
    抗压强度Cu/kPa10
    内摩擦系数μi0.5
    下载: 导出CSV

    表  2  离散元微观力学参数

    Tab.  2  Micro mechanical parameters of the discrete element

    力学参数平均值
    法向刚度 Kn/(kN·m−1)123
    切向刚度 Ks/(kN·m−1)48.7
    断裂位移 Xb/m1.40×10−6
    抗剪力 Fs0/N0.898
    摩擦系数 μp0.121
    下载: 导出CSV

    表  3  数值模拟与现场试验孔压数据对比

    Tab.  3  Data comparison of pore pressure between numerical simulation and field test

    深度/m现场孔压/kPa模拟孔压/kPa
    0.050.5850.652
    0.120.7991.513
    0.21.891.858
    0.31.6351.814
    下载: 导出CSV
  • [1] 常方强, 贾永刚. 黄河口粉质土海床液化过程的现场试验研究[J]. 土木工程学报, 2012, 45(1): 121−126.

    Chang Fangqiang, Jia Yonggang. In-situ test to study silt liquefaction at the subaqueous delta of Yellow River[J]. China Civil Engineering Journal, 2012, 45(1): 121−126.
    [2] Anderson D, Cox D, Mieras R, et al. Observations of wave‐induced pore pressure gradients and bed level response on a surf zone sandbar[J]. Journal of Geophysical Research: Oceans, 2017, 122(6): 5169−5193. doi: 10.1002/2016JC012557
    [3] Niu Jianwei, Xu Jishang, Dong Ping, et al. Pore water pressure responses in silty sediment bed under random wave action[J]. Scientific Reports, 2019, 9(1): 11685. doi: 10.1038/s41598-019-48119-y
    [4] 刘晓磊, 贾永刚, 郑杰文. 波浪导致黄河口海床沉积物超孔压响应现场试验研究[J]. 岩土力学, 2015, 36(11): 3055−3062.

    Liu Xiaolei, Jia Yonggang, Zheng Jiwen. In situ experiment of wave-induced excess pore pressure in the seabed sediment in Yellow River estuary[J]. Rock and Soil Mechanics, 2015, 36(11): 3055−3062.
    [5] 张少同, 贾永刚, 刘晓磊, 等. 现代黄河三角洲沉积物动态变化过程的特征与机理[J]. 海洋地质与第四纪地质, 2016, 36(6): 33−44.

    Zhang Shaotong, Jia Yonggang, Liu Xiaolei, et al. Feature and mechanism of sediment dynamic changing processes in the Modern Yellow River Delta[J]. Marine Geology & Quaternary Geology, 2016, 36(6): 33−44.
    [6] 吕豪杰, 周香莲, 王建华. 波浪荷载作用下桩周土体孔隙水压力试验研究[J]. 上海交通大学学报, 2018, 52(7): 757−763.

    Lv Haojie, Zhou Xianglian, Wang Jianhua. Laboratory study of wave-induced pore pressures around the pile[J]. Journal of Shanghai Jiaotong University, 2018, 52(7): 757−763.
    [7] 宋玉鹏, 孙永福, 杜星, 等. 波浪作用下海底粉土孔隙水压力响应过程监测研究[J]. 海洋地质与第四纪地质, 2018, 38(2): 208−214.

    Song Yupeng, Sun Yongfu, Du Xing, et al. Monitoring of silt pore pressure responding process to wave action[J]. Marine Geology & Quaternary Geology, 2018, 38(2): 208−214.
    [8] 吴雷晔, 朱斌, 陈仁朋, 等. 波浪-海床-结构物相互作用离心模型试验及数值模拟[J]. 土木工程学报, 2019, 52(S2): 186−192.

    Wu Leiye, Zhu Bin, Cheng Renpeng, et al. Centrifuge test and numerical simulation of wave-seabed-structure interaction[J]. China Civil Engineering Journal, 2019, 52(S2): 186−192.
    [9] 潘冬子, 王立忠, 潘存鸿. 粉质海床波浪响应的数值模拟及试验研究[J]. 岩土力学, 2008, 29(10): 2697−2700, 2707. doi: 10.3969/j.issn.1000-7598.2008.10.020

    Pan Dongzi, Wang Lizhong, Pan Cunhong. Numerical simulation and experimental investigation of wave-induced response in silty seabed[J]. Rock and Soil Mechanics, 2008, 29(10): 2697−2700, 2707. doi: 10.3969/j.issn.1000-7598.2008.10.020
    [10] 刘涛, 冯秀丽, 林霖. 海底孔压对波浪响应试验研究及数值模拟[J]. 海洋学报, 2006, 28(3): 173−176.

    Liu Tao, Feng Xiuli, Lin Lin. Study of seabed pore water pressure based on in-situ test and numerical simulation[J]. Haiyang Xuebao, 2006, 28(3): 173−176.
    [11] 周援衡, 卢海斌, 陈智杰. 波浪作用下弹性海床孔隙水应力响应的数值模拟[J]. 水道港口, 2005, 26(2): 67−70. doi: 10.3969/j.issn.1005-8443.2005.02.001

    Zhou Yuanheng, Lu Haibin, Chen Zhijie. Numerical simulation of pore water pressure response of elastic seabed under wave loading[J]. Journal of Waterway and Harbor, 2005, 26(2): 67−70. doi: 10.3969/j.issn.1005-8443.2005.02.001
    [12] Liu Chun, Xu Qiang, Shi Bin, et al. Mechanical properties and energy conversion of 3D close-packed lattice model for brittle rocks[J]. Computers & Geosciences, 2017, 103: 12−20.
    [13] 雷健, 潘保芝, 张丽华. 基于数字岩心和孔隙网络模型的微观渗流模拟研究进展[J]. 地球物理学进展, 2018, 33(2): 653−660. doi: 10.6038/pg2018BB0108

    Lei Jian, Pan Baozhi, Zhang Lihua. Advance of microscopic flow simulation based on digital cores and pore network[J]. Progress in Geophysics, 2018, 33(2): 653−660. doi: 10.6038/pg2018BB0108
    [14] 刘春, 乐天呈, 施斌, 等. 颗粒离散元法工程应用的三大问题探讨[J]. 岩石力学与工程学报, 2020, 39(6): 1142−1152.

    Liu Chun, Le Tiancheng, Shi Bin, et al. Discussion on three major problems of engineering application of the particle discrete element method[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1142−1152.
    [15] 常方强, 贾永刚. 黄河口水下斜坡波致圆弧振荡剪切破坏分析[J]. 海洋学报, 2010, 32(5): 175−179.

    Chang Fangqiang, Jia Yonggang. The analysis on the arc oscillatory shear failure induced by wave on the seabed in the Huanghe Estuary[J]. Haiyang Xuebao, 2010, 32(5): 175−179.
    [16] 刘春, 范宣梅, 朱晨光, 等. 三维大规模滑坡离散元建模与模拟研究——以茂县新磨村滑坡为例[J]. 工程地质学报, 2019, 27(6): 1362−1370.

    Liu Chun, Fan Xuanmei, Zhu Chenguang, et al. Discrete element modeling and simulation of 3-dimen-sional large-scale landslide-taking Xinmocun landslide as an example[J]. Journal of Engineering Geology, 2019, 27(6): 1362−1370.
    [17] Liu Xiaoli, Cui Haonan, Jeng D S, et al. A coupled mathematical model for accumulation of wave-induced pore water pressure and its application[J]. Coastal Engineering, 2019, 154: 103577. doi: 10.1016/j.coastaleng.2019.103577
    [18] Zhang Jisheng, Tong Linlong, Zheng Jinhai, et al. Effects of soil-resistance damping on wave-induced pore pressure accumulation around a composite breakwater[J]. Journal of Coastal Research, 2018, 34(3): 573−585. doi: 10.2112/JCOASTRES-D-17-00033.1
    [19] Vanneste D, Troch P. An improved calculation model for the wave-induced pore pressure distribution in a rubble-mound breakwater core[J]. Coastal Engineering, 2012, 66: 8−23. doi: 10.1016/j.coastaleng.2012.03.007
    [20] Jeng D S, Zhang H. An integrated three-dimensional model of wave-induced pore pressure and effective stresses in a porous seabed: II. Breaking waves[J]. Ocean Engineering, 2005, 32(16): 1950−1967. doi: 10.1016/j.oceaneng.2005.01.005
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  10
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 修回日期:  2021-02-09
  • 网络出版日期:  2021-08-10

目录

    /

    返回文章
    返回