留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中法海洋卫星散射计近海岸海面风场反演研究

林文明 郎姝燕 赵晓康 刘建强 李秀仲

林文明,郎姝燕,赵晓康,等. 中法海洋卫星散射计近海岸海面风场反演研究[J]. 海洋学报,2021,43(10):1–9 doi: 10.12284/hyxb2021157
引用本文: 林文明,郎姝燕,赵晓康,等. 中法海洋卫星散射计近海岸海面风场反演研究[J]. 海洋学报,2021,43(10):1–9 doi: 10.12284/hyxb2021157
Lin Wenming,Lang Shuyan,Zhao Xiaokang, et al. Coastal wind retrieval from the China-France Oceanography Satellite scatterometer[J]. Haiyang Xuebao,2021, 43(10):1–9 doi: 10.12284/hyxb2021157
Citation: Lin Wenming,Lang Shuyan,Zhao Xiaokang, et al. Coastal wind retrieval from the China-France Oceanography Satellite scatterometer[J]. Haiyang Xuebao,2021, 43(10):1–9 doi: 10.12284/hyxb2021157

中法海洋卫星散射计近海岸海面风场反演研究

doi: 10.12284/hyxb2021157
基金项目: 国家重点研发计划(2016YFC1401005);国家自然科学基金青年基金(No. 41706197);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0302)
详细信息
    作者简介:

    林文明(1984-),男,福建省仙游县人,教授,研究方向为海洋微波遥感、先进数据处理方法、雷达定标技术、以及海面风场遥感及应用。E-mail:wenminglin@nuist.edu.cn

  • 中图分类号: P715.7

Coastal wind retrieval from the China-France Oceanography Satellite scatterometer

  • 摘要: 中法海洋卫星散射计(CSCAT)使用扇形波束旋转扫描体制,能够以多角度测量同一海面的雷达后向散射系数,并具有空间分辨率较高的特点。这为近海岸海面风场反演提供了新的机遇。本文介绍了CSCAT近海岸海面风场处理的主要流程和关键技术。特别地,在风场反演之前,利用一种矩形窗算术平均的方法将L1B级的高分辨率条带数据组合平均到相应的风矢量单元中,从而实现近海岸风场反演的快速预处理。通过对比CSCAT、欧洲先进散射计(ASCAT)以及美国QuikSCAT散射计的近海岸风场,发现CSCAT风场的质量在离岸40 km以外区域具有良好的一致性,而在离岸40 km以内显著恶化。分析表明,CSCAT近海岸区域风场统计特征恶化的原因可能是由潜在的海冰污染引起的。总体而言,CSCAT的近海岸风场与模式背景风场和浮标风场都具有良好的一致性。
  • 图  1  CFOSAT散射计近海岸风场反演的预处理流程

    Fig.  1  Preprocessing flow of the coastal wind retrieval for CFOSAT scatterometer

    图  2  CFOSAT散射计在4个不同方位角的雷达足迹(黑色等高线),原始分辨单元(条带,彩色等高线)示意图(a)和条带组合示意图(b)

    黑色圆点表示条带的中心位置,黑色方块表示网格的中心位置。CFOSAT近海岸风场预处理时,只有中心位置位于网格方框内的条带才被用于组合平均

    Fig.  2  The radar footprints (black contours), the raw range-gated resolution (namely slices, color contours) of CFOSAT scatterometer at four different azimuth angles (a) and illustration of the slice aggregation (b)

    The slices, whose centers (black dots) are inside the square, are averaged during the preprocessing flow of CFOSAT coastal wind retrieval

    图  3  CFOSAT散射计于2020年5月12日UTC22时41分观测的台风“黄蜂”,网格分辨率25 km(a);同时间的CFOSAT散射计近海岸海面风场,网格分辨率约为12.5 km×12.5 km(b);ASCAT散射计于5月14日UTC0时50分观测的台风“黄蜂”,图为12.5 km×12.5 km的近海岸风场(c)

    Fig.  3  CFOSAT scatterometer wind field (Typhoon Vongfong) with 25 km grid resolution. The acquisition date and time are May 12th 2020, at UTC 22:41 (a); the same as a, but for the coastal wind product with resolution of 12.5 km ×12.5 km (b); ASCAT coastal wind field (Typhoon Vongfong) with resolution of 12.5 km ×12.5 km. The acquisition date and time are May 14th 2020, at UTC 00:50 (c)

    图  4  近海岸区域ASCAT、CFOSAT散射计以及QuikSCAT散射计观测数据量的分布特征

    Fig.  4  The normalized number of wind observations as a function of the distance to coastline for ASCAT, CFOSAT scatterometer, and QuikSCAT, respectively

    图  5  近海岸区域ASCAT、CFOSAT散射计以及QuikSCAT散射计的风速统计特征:风速偏差(a);风速标准差(b)

    Fig.  5  The wind speed bias (a) and standard deviation errors (b) as a function of the distance to coastline for ASCAT, CFOSAT scatterometer, and QuikSCAT, respectively

    图  6  离岸40 km以内的ASCAT(a),CSCAT(b),以及QuikSCAT(c)海面风场与模式背景风场的对比图左边为风速对比结果,右边为风向对比结果

    每个图的左上角分别是散射计风场与背景风场的相关系数(CC)、偏差(bias)和标准差

    Fig.  6  Two-dimensional histograms of ASCAT (a), CSCAT (b), and QuikSCAT (c) wind speed (left panels) and direction (right panels) versus each collocated Numerical Weather Prediction (NWP) background winds. Here the observations with distance to coastline < 40 km are used in the analysis

    The statistical scores, namely correlation coefficient (CC), bias and standard deviation (SD), are shown in the upper-left corner of each panel

    图  7  离岸40 km以内,CSCAT风速偏差(相对于ECMWF)大于6 m/s的异常值的分布直方图

    Fig.  7  Geographic distribution of the abnormal CSCAT observations which distance to coastline is less than 40 km. Here abnormal observation means that the wind speed bias w.r.t. ECMWF is larger than 6 m/s

    图  8  离岸40 km以内CSCAT与全球固定浮标的风场散点对比图

    Fig.  8  Scatter plots of CSCAT wind speed and direction versus global moored buoy winds. Here the observations with distance to coastline < 40 km are studied

  • [1] Johnson J, Williams L, Bracalente E, et al. Seasat-A satellite scatterometer instrument evaluation[J]. IEEE Journal of Oceanic Engineering, 1980, 5(2): 138−144. doi: 10.1109/JOE.1980.1145461
    [2] Tsai W Y, Graf J E, Winn C, et al. Postlaunch sensor verification and calibration of the NASA scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3): 1517−1542. doi: 10.1109/36.763264
    [3] Figa-Saldaña J, Wilson J J W, Attema E, et al. The advanced scatterometer (ASCAT) on the meteorological operational (Metop) platform: A follow on for European wind scatterometers[J]. Canadian Journal of Remote Sensing, 2002, 28(3): 404−412. doi: 10.5589/m02-035
    [4] Wang Zhixiong, Zhao Chaofang, Zou Juhong, et al. An improved wind retrieval algorithm for the HY-2A scatterometer[J]. Chinese Journal of Oceanology and Limnology, 2015, 33(5): 1201−1209. doi: 10.1007/s00343-015-4145-3
    [5] Bhowmick S A, Kumar R, Kumar A S K. Cross calibration of the OceanSAT-2 scatterometer with QuikSCAT scatterometer using natural terrestrial targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(6): 3393−3398. doi: 10.1109/TGRS.2013.2272738
    [6] Long D G, Luke J B, Plant W. Ultra high resolution wind retrieval for SeaWinds[C]// 2003 IEEE International Geoscience and Remote Sensing Symposium. Toulouse: IEEE, 2003, 1264−1266.
    [7] Fore A, Strub T, James C, et al. Evaluation of coastal scatterometer products[R]. Sapporo: Present at the International Ocean Vector Winds Science Team Meeting, 2016.
    [8] Verhoef A, Portabella M, Stoffelen A. High-resolution ASCAT scatterometer winds near the coast[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2481−2487. doi: 10.1109/TGRS.2011.2175001
    [9] Vogelzang J, Stoffelen A. ASCAT ultrahigh-resolution wind products on optimized grids[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(5): 2332−2339. doi: 10.1109/JSTARS.2016.2623861
    [10] Lin Wenming, Dong Xiaolong, Portabella M, et al. A perspective on the performance of the CFOSAT rotating fan-beam scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 627−639. doi: 10.1109/TGRS.2018.2858852
    [11] Liu Jianqiang, Lin Wenming, Dong Xiaolong, et al. First results from the rotating fan beam scatterometer onboard CFOSAT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8793−8806. doi: 10.1109/TGRS.2020.2990708
    [12] Stoffelen A, Portabella M. On Bayesian scatterometer wind inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1523−1533. doi: 10.1109/TGRS.2005.862502
    [13] K. S. Team, NSCAT-4 Geophysical Model Function. Accessed: Sept. 10, 2020[EB/OL]. http://projects.knmi.nl/scatterometer/nscat_gmf/.
    [14] Vogelzang J, Stoffelen A, Verhoef A, et al. Validation of two-dimensional variational ambiguity removal on SeaWinds scatterometer data[J]. Journal of Atmospheric and Oceanic Technology, 2009, 26(7): 1229−1245. doi: 10.1175/2008JTECHA1232.1
    [15] Zhang Kuo, Dong Xiaolong, Zhu Di, et al. Estimation and correction of geolocation errors of the CFOSAT scatterometer using coastline backscatter coefficients[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 53−61.
    [16] Lin Wenming, Portabella M. Toward an improved wind quality control for RapidScat[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3922−3930. doi: 10.1109/TGRS.2017.2683720
    [17] Li Zhen, Stoffelen A, Verhoef A. A generalized simulation capability for rotating-beam scatterometers[J]. Atmospheric Measurement Techniques, 2019, 12(7): 3573−3594. doi: 10.5194/amt-12-3573-2019
  • 加载中
图(8)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  3
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-16
  • 修回日期:  2021-01-25
  • 网络出版日期:  2021-08-27

目录

    /

    返回文章
    返回