Physical and optical properties of the first-year ice in the Amundsen Gulf of the Arctic
-
摘要: 利用加拿大环极冰间水道系统研究项目,作者对2007年11月24日至2008年1月26日北极群岛阿蒙森湾海域秋冬季节一年冰的物理和光学性质进行了观测研究。结果显示,观测期间的海冰厚度整体在27~108 cm范围内变化,积雪厚度仅为0~6 cm。海冰温度、盐度和密度在冰内的分布特征为:海冰表层最低温度为–22.4℃,底层最高温度为–2.2℃,冰内温度随深度单调增大;盐度变化范围为3.30~11.70,冰内盐度剖面呈现“C”形,即表层和底层盐度较大,而中间层盐度较小;海冰的平均密度略大,为(0.91±0.03)g/cm3。通过观测人造光源在海冰中的透射辐射谱分布,发现一年冰的光谱透射辐射在490 nm和589 nm处呈明显的双峰结构,但随着海冰厚度的增加,双峰结构逐渐减弱,体现了海冰对于不同谱段辐射能衰减作用的差异。在可见光范围内,裸冰和雪覆冰的吸收率最小值出现在490 nm,在443~490 nm范围内二者的吸收率随波长增大而降低,在490~683 nm范围内二者的吸收率随波长增大而升高,但雪覆冰的吸收率在可见光范围内基本保持不变,体现了雪覆冰吸收率的光谱独立性。一年冰的谱衰减系数随波长呈“U”字形分布,紫光和红光谱段的衰减系数较大,中间谱段的衰减系数较小,589 nm波长的衰减系数最小,为1.7 m–1。将谱衰减系数在可见光范围内积分,得到一年冰的积分漫射衰减系数约为2.3 m–1,略高于多年浮冰的漫射衰减系数1.5 m–1。阿蒙森湾一年冰与加拿大海盆北部多年浮冰辐射光学性质的差异,主要源于陆源物质输入引起的海冰内含物组分的改变,而不同组分对光谱的吸收和散射性质不同,进一步导致了光学性质的整体变化。Abstract: In the Canadian Circumpolar Flaw Lead System Study, the physical and optical properties of first-year ice during the freezing season were observed at the Amundsen Gulf from November 24th, 2007 to January 26th, 2008. The results show that the thickness of sea ice during this period ranged from 27 cm to 108 cm, while the snow depth varied between 0 cm and 6 cm. The changes of temperature, salinity and density in the interior of sea ice are respectively: temperature within the sea ice rose monotonically along with the increasing of depth, reaching a maximum of −2.2℃ at the surface and a minimum of −22.4℃ at the bottom; the salinity ranged from 3.30 to 11.70 with a C-shaped pattern in its vertical section, which means that the salinity of upper surface and bottom layer is larger than that in the middle part; the average density of the sea ice was slightly larger, which is (0.91±0.03) g/cm3. With the special designing of artificial light source and in-situ instrumentation, an obvious two-peek structure at 490 nm and 589 nm was found in the spectral distribution of the transmitted radiation through the first-year ice. The two-peak structure weakens as the thickness of sea ice increases, indicating the spectrum dependence of the attenuation. In the visible band, the spectral absorbance of both bare ice and snow-covered ice reaches its minimum at 490 nm, and rises as the wavelength moves towards 443 nm or 683 nm. However, for snow-covered ice, the variation of absorption rate is little enough to present a spectral independence. In addition, the spectral distribution of the attenuation coefficient was U-shaped in the visible band, with a minimum of 1.7 m−1 at 589 nm. The integral diffuse attenuation coefficient of the first-year ice in visible band was about 2.3 m−1, which was slightly higher than 1.5 m−1, the diffuse attenuation coefficient of multi-year floe ice. The difference of the optical properties between first-year ice in the Amundsen Gulf and multi-year ice in the north of Canada Basin is mainly attributed to various components of the sea ice inclusions caused by the input of terrestrial materials with different absorption and scattering properties.
-
Key words:
- Arctic /
- first-year ice /
- physical properties /
- optical properties /
- attenuation coefficient
-
图 1 研究区域和观测站点在北极阿蒙森湾的分布
红色圆点为观测站位,b图中红色曲线表示麦肯锡河流经区域,绿色箭头曲线代表太平洋水进入北冰洋的3条分支之一——阿拉斯加沿岸流,紫色和蓝色箭头曲线代表另外两条分支
Fig. 1 Study area and stations in the Amundsen Gulf of the Arctic
The red dots are observing sites, the red curve in b is the Mackenzie River and the green arrow represents one of the three branches of Pacific inflow—Alaska Coastal Current as the purple and blue arrows represent the another two branches
图 8 不同类型海冰的衰减系数谱分布
a. 多年冰表面粒状层[12];b. 一年冰;c. 多年冰内部[12];d. 2011年夏季融化冰[21];e. 2010年夏季融化冰[21]
Fig. 8 Spectral attenuation coefficients for various types of ice
a. Surface granular layer of multi-year white ice[12]; b. first-year ice in present study; c. interior of of multi-year white ice[12]; d. melting ice in July 2011[21]; e. melting ice in June 2010[21]
表 1 北极阿蒙森湾海冰光学观测站位信息
Tab. 1 Summary of the observation stations and major properties of the sea ice and snow in the Amundsen Gulf of the Arctic
序号 站名 观测日期 位置 冰厚/cm 雪厚/cm 气温/℃ 1 011 2007年11月24日 73°45.744'N, 126°50.004'W 27 1 –19.2 2 013 2007年11月28日 70°25.925'N, 126°28.127'W 52 5 –15.9 3 014 2007年11月29日 71°08.877'N, 123°55.631'W 55 5 –17.6 4 015 2007年11月29日 71°08.877'N, 123°55.631'W 69 5 –22.4 5 021 2007年12月4日 71°25.030'N, 124°55.419'W 27 0 –20.6 6 022 2007年12月5日 71°18.690'N, 124°46.580'W 42 1 –16.5 7 023 2007年12月5日 71°18.690'N, 124°46.580'W 39 2 –16.5 8 024 2007年12月5日 71°18.690'N, 124°46.580'W 44 2 –16.5 9 029 2007年12月10日 71°15.952'N, 125°15.543'W 77 2 –21.7 10 030 2007年12月10日 71°15.952'N, 125°15.543'W 75 2 –21.7 11 032 2007年12月14日 71°25.715'N, 125°53.402'W 80 2 –18.9 12 033 2007年12月14日 71°25.715'N, 125°53.402'W 82 4 –18.9 13 034 2007年12月15日 71°25.715'N, 125°53.402'W 84 3 –21.7 14 035 2007年12月17日 71°47.689'N, 125°52.848'W 53 6 –19.6 15 036 2007年12月17日 71°47.689'N, 125°52.848'W 58 6 –19.6 16 037 2007年12月25日 71°16.22'N, 124°25.29'W 29 1 –21.0 17 038 2007年12月26日 71°13.003'N, 124°26.511'W 83 1 –21.0 18 039 2007年12月29日 71°22.8'N, 125°04.1'W 70 2 –17.6 19 040 2008年1月1日 70°58.812'N, 123°29.413W 98 3 –24.9 20 041 2008年1月3日 71°14.395'N, 124°29.437'W 106 3 –23.3 21 042 2008年1月7日 71°31.9'N, 125°34.8'W 108 2.5 –24.9 22 044 2008年1月15日 71°30.5'N, 124°55.3'W 45 2 –26.1 23 045 2008年1月16日 71°30.6'N, 124°55.5'W 70 1 –25.8 24 047 2008年1月17日 71°31.8'N, 124°58.7'W 94 1.5 –24.7 25 048 2008年1月17日 71°31.8'N, 124°58.7'W 94 4.5 –24.7 26 049 2008年1月18日 71°32.8'N, 125°00.6'W 70 3.5 –24.6 27 051 2008年1月19日 71°32.9'N, 124°59.9'W 98 1 –25.4 28 052 2008年1月19日 71°32.9'N, 124°59.9'W 108 4 –25.4 29 053 2008年1月20日 71°35.2'N, 125°07.3'W 55 3 –14.8 30 054 2008年1月22日 71°36.2'N, 125°09.4'W 56 4 –12.7 31 057 2008年1月26日 71°07.4'N, 124°57.5'W 93 3.5 –29.1 32 058 2008年1月26日 71°07.4'N, 124°57.5'W 93 3 –29.1 -
[1] Serreze M C, Holland M M, Stroeve J. Perspectives on the Arctic’s shrinking sea-ice cover[J]. Science, 2007, 315(5818): 1533−1536. doi: 10.1126/science.1139426 [2] Stroeve J C, Kattsov V, Barrett A, et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations[J]. Geophysical Research Letters, 2012, 39(16): L16502. [3] Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic sea ice cover[J]. Geophysical Research Letters, 2008, 35(1): L031972. [4] Stroeve J, Holland M M, Meier W, et al. Arctic sea ice decline: Faster than forecast[J]. Geophysical Research Letters, 2007, 34(9): L09501. [5] Haas C, Pfaffling A, Hendricks S, et al. Reduced ice thickness in Arctic Transpolar Drift favors rapid ice retreat[J]. Geophysical Research Letters, 2008, 35(17): L17501. doi: 10.1029/2008GL034457 [6] Rothrock D A, Percival D B, Wensnahan M. The decline in Arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data[J]. Journal of Geophysical Research: Oceans, 2008, 113(C5): C05003. [7] Giles K A, Laxon S W, Ridout A L. Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum[J]. Geophysical Research Letters, 2008, 35(22): L22502. doi: 10.1029/2008GL035710 [8] Rigor I G, Wallace J M. Variations in the age of Arctic sea-ice and summer sea-ice extent[J]. Geophysical Research Letters, 2004, 31(9): L09401. [9] Maslanik J A, Fowler C, Stroeve J, et al. A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss[J]. Geophysical Research Letters, 2007, 34(24): L24501. doi: 10.1029/2007GL032043 [10] Nghiem S V, Rigor I G, Perovich D K, et al. Rapid reduction of Arctic perennial sea ice[J]. Geophysical Research Letters, 2007, 34(19): L19504. doi: 10.1029/2007GL031138 [11] Light B, Grenfell T C, Perovich D K. Transmission and absorption of solar radiation by Arctic sea ice during the melt season[J]. Journal of Geophysical Research: Oceans, 2008, 113(C3): C03023. [12] Grenfell T C, Maykut G A. The optical properties of ice and snow in the Arctic Basin[J]. Journal of Glaciology, 1977, 18(80): 445−463. doi: 10.1017/S0022143000021122 [13] Perovich D K. Seasonal changes in sea ice optical properties during fall freeze-up[J]. Cold Regions Science and Technology, 1991, 19(3): 261−273. doi: 10.1016/0165-232X(91)90041-E [14] Perovich D K, Polashenski C. Albedo evolution of seasonal Arctic sea ice[J]. Geophysical Research Letters, 2012, 39(8): L08501. [15] Perovich D K, Grenfell T C, Light B, et al. Seasonal evolution of the albedo of multiyear Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2002, 107(C10): 8044. doi: 10.1029/2000JC000438 [16] Webster M A, Rigor I G, Perovich D K, et al. Seasonal evolution of melt ponds on Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2015, 120(9): 5968−5982. doi: 10.1002/2015JC011030 [17] Peng Haitao, Ke Changqing, Shen Xiaoyi, et al. Summer albedo variations in the Arctic sea ice region from 1982 to 2015[J]. International Journal of Climatology, 2020, 40(6): 3008−3020. doi: 10.1002/joc.6379 [18] Perovich D K. On the aggregate-scale partitioning of solar radiation in Arctic sea ice during the SHEBA field experiment[J]. Alimentary Pharmacology and Therapeutics, 2014, 40(4): 392−402. doi: 10.1111/apt.12842 [19] Wang Caixin, Granskog M A, Sebastian G, et al. Autonomous observations of solar energy partitioning in first-year sea ice in the Arctic Basin[J]. Journal of Geophysical Research: Oceans, 2014, 119(3): 2066−2080. doi: 10.1002/2013JC009459 [20] 赵进平, 李涛. 极低太阳高度条件下穿透海冰的太阳辐射研究[J]. 中国海洋大学学报(自然科学版), 2009, 39(5): 822−828.Zhao Jinping, Li Tao. The solar radiation penetrating sea ice with very low solar altitude[J]. Periodical of Ocean University of China, 2009, 39(5): 822−828. [21] Light B, Perovich D K, Webster M A, et al. Optical properties of melting first-year Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2015, 120(11): 7657−7675. doi: 10.1002/2015JC011163 [22] Nicolaus M, Katlein C, Maslanik J, et al. Changes in Arctic sea ice result in increasing light transmittance and absorption[J]. Geophysical Research Letters, 2012, 39(24): L24501. [23] Katlein C, Arndt S, Nicolaus M, et al. Influence of ice thickness and surface properties on light transmission through Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2015, 120(9): 5932−5944. doi: 10.1002/2015JC010914 [24] Untersteiner N. On the mass and heat budget of Arctic sea ice[J]. Archiv Für Meteorologie, Geophysik Und Bioklimatologie, Serie A, 1961, 12(2): 151−182. [25] Thomas C W. On the transfer of visible radiation through sea ice and snow[J]. Journal of Glaciology, 1963, 4(34): 481−484. doi: 10.1017/S0022143000027921 [26] Katlein C, Valcic L, Lambert-Girard S, et al. New insights into radiative transfer within sea ice derived from autonomous optical propagation measurements[J]. The Cryosphere, 2021, 15(1): 183−198. doi: 10.5194/tc-15-183-2021 [27] Perovich D K, Grenfell T C. Laboratory studies of the optical properties of young sea ice[J]. Journal of Glaciology, 1981, 27(96): 331−346. doi: 10.1017/S0022143000015410 [28] 曲平, 赵进平, 李淑江, 等. 渤海海冰中太阳辐射的光谱特征观测研究[J]. 海洋学报, 2009, 31(1): 37−43.Qu Ping, Zhao Jinping, Li Shujiang, et al. Spectral features of solar radiation in sea ice of Bohai Sea[J]. Haiyang Xuebao, 2009, 31(1): 37−43. [29] Gilbert G D, Buntzen R R. In-situ measurements of the optical properties of Arctic sea ice[C]//Proceedings of SPIE 0637, Ocean Optics VIII. Orlando, USA: SPIE, 1986: 252−263. [30] Lei Ruibo, Leppäranta M, Erm A, et al. Field investigations of apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009[J]. Estonian Journal of Earth Sciences, 2011, 60(1): 50−64. doi: 10.3176/earth.2011.1.05 [31] Katlein C, Arndt S, Belter H J, et al. Seasonal evolution of light transmission distributions through Arctic sea ice[J]. Journal of Geophysical Research: Oceans, 2019, 124(8): 5418−5435. doi: 10.1029/2018JC014833 [32] Warren S G. Optical properties of ice and snow[J]. Philosophical Transactions of the Royal Society A, Mathematical, Physical and Engineering Sciences, 2019, 377(2146): 20180161. doi: 10.1098/rsta.2018.0161 [33] Pounder E R, Little E M. Some physical properties of sea ice. I[J]. Canadian Journal of Physics, 2011, 37(4): 443−473. [34] 王庆凯. 北极航道融冰期海冰物理和力学工程参数研究[D]. 大连: 大连理工大学, 2019.Wang Qingkai. Study on the physical and mechanical engineering parameters of sea ice during melt season for Arctic Passage[D]. Dalian: Dalian University of Technology, 2019. [35] Cao Xiaowei, Lu Peng, Lei Ruibo, et al. Physical and optical characteristics of sea ice in the Pacific Arctic Sector during the summer of 2018[J]. Acta Oceanologica Sinica, 2020, 39(9): 25−37. doi: 10.1007/s13131-020-1645-6 [36] Rachold V, Eicken H, Gordeev V V, et al. Modern terrigenous organic carbon input to the Arctic Ocean[C]//The Organic Carbon Cycle in the Arctic Ocean. Berlin, Heidelberg: Springer, 2004: 33−35. [37] Corlett W B, Pickart R S. The Chukchi slope current[J]. Progress in Oceanography, 2017, 153: 50−65. [38] 赵进平, 李涛, 李淑江, 等. 北极海冰人造光源实验的光场结构和实验方案优化[J]. 极地研究, 2008, 20(3): 287−298.Zhao Jinping, Li Tao, Li Shujiang, et al. Radiation of lamp and optimized experiment using artificial light in the Arctic Ocean[J]. Chinese Journal of Polar Research, 2008, 20(3): 287−298. [39] Perovich D K. The optical properties of sea ice[R/OL]. [2021−02−01]. http://hdl.handle.net/11681/2648. [40] Mueller J L. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume III: Radiometric Measurements and Data Analysis Protocols[M]. Greenbelt, Maryland: Goddard Space Flight Center, 2003. [41] Perovich D K, Gow A J. A quantitative description of sea ice inclusions[J]. Journal of Geophysical Research: Oceans, 1996, 101(C8): 18327−18343. doi: 10.1029/96JC01688 [42] Timco G W, Frederking R M W. A review of sea ice density[J]. Cold Regions Science and Technology, 1996, 24(1): 1−6. doi: 10.1016/0165-232X(95)00007-X [43] Sanderson B G, Redden A M, Broome J E. Sediment-laden ice measurements and observations, and implications for potential interactions of ice and large woody debris with tidal turbines in Minas Passage[R]. Wolfville, NS, Canada: Publication No. 109 of the Acadia Centre for Estuarine Research, 2012. [44] Smedsrud L H. A model for entrainment of sediment into sea ice by aggregation between frazil-ice crystals and sediment grains[J]. Journal of Glaciology, 2002, 48(160): 51−61. doi: 10.3189/172756502781831520 [45] 周虹丽, 朱建华, 李铜基. 中国近海黄色物质吸收光谱经验斜率特征研究[J]. 热带海洋学报, 2015, 34(1): 23−29. doi: 10.3969/j.issn.1009-5470.2015.01.004Zhou Hongli, Zhu Jianhua, Li Tongji. Spectral properties of colored dissolved organic matter in Chinese offshore waters[J]. Journal of Tropical Oceanography, 2015, 34(1): 23−29. doi: 10.3969/j.issn.1009-5470.2015.01.004 [46] Tiwari S P, Shanmugam P. An optical model for the remote sensing of coloured dissolved organic matter in coastal/ocean waters[J]. Estuarine, Coastal and Shelf Science, 2011, 93(4): 396−402. doi: 10.1016/j.ecss.2011.05.010 [47] Simpson K, Tremblay J, Gratton Y, et al. An annual study of inorganic and organic nitrogen and phosphorus and silicic acid in the southeastern Beaufort Sea[J]. Journal of Geophysical Research: Oceans, 2008(113): C07016. [48] Arrigo K R, van Dijken G L. Annual cycles of sea ice and phytoplankton in Cape Bathurst polynya, southeastern Beaufort Sea, Canadian Arctic[J]. Geophysical Research Letters, 2004, 31(8): L08304. [49] Magen C, Chaillou G, Crowe S A, et al. Origin and fate of particulate organic matter in the southern Beaufort Sea–Amundsen Gulf region, Canadian Arctic[J]. Estuarine, Coastal and Shelf Science, 2010, 86(1): 31−41. doi: 10.1016/j.ecss.2009.09.009 [50] Thomas D N, Dieckmann G S. Sea Ice: An Introduction to its Physics, Chemistry, Biology and Geology[M]. Oxford, UK: Blackwell Science Ltd, 2003.