留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

El Niño事件对河流入海COD的调控机制

黄全佳

黄全佳. El Niño事件对河流入海COD的调控机制−基于高分辨率时间序列观测的证据[J]. 海洋学报,2021,43(6):62–70 doi: 10.12284/hyxb2021142
引用本文: 黄全佳. El Niño事件对河流入海COD的调控机制−基于高分辨率时间序列观测的证据[J]. 海洋学报,2021,43(6):62–70 doi: 10.12284/hyxb2021142
Huang Quanjia. Regulation of El Niño event on riverine COD export: Evidence from high frequency time-series buoy monitoring[J]. Haiyang Xuebao,2021, 43(6):62–70 doi: 10.12284/hyxb2021142
Citation: Huang Quanjia. Regulation of El Niño event on riverine COD export: Evidence from high frequency time-series buoy monitoring[J]. Haiyang Xuebao,2021, 43(6):62–70 doi: 10.12284/hyxb2021142

El Niño事件对河流入海COD的调控机制基于高分辨率时间序列观测的证据

doi: 10.12284/hyxb2021142
详细信息
    作者简介:

    黄全佳(1970—),男,福建省南安市人,高级工程师,主要从事环境科学研究、环境监测与分析。E-mail:18905925898@189.cn

  • 中图分类号: P714+.4

Regulation of El Niño event on riverine COD export: Evidence from high frequency time-series buoy monitoring

  • 摘要: 入海污染物在线监测是实现海洋污染总量控制和测管协同的关键手段之一。本文基于布设在福建省九龙江口的多参数浮标,获取2014−2018年浮标盐度和荧光溶解有机质(FDOM)数据,结合人工采样测定化学需氧量(COD)浓度,建立了河口区COD浓度的快速反演模型。使用有效浓度法外推得到河端COD浓度,结合流量数据估算了高频率的COD入海通量,利用通量分解模型定量分析了COD入海通量的调控因素。结果表明:(1) COD河端有效浓度的拟合值与实测值的偏差为(10.4±8.8)%,模型能够较好地反演九龙江口河端的COD浓度;(2)在季节尺度上,受2015−2016年超强El Niño事件影响,2016年旱季的异常降雨降低了河流COD浓度,但是径流量的增加仍然显著提高了该季节COD的入海通量;(3)在年际尺度上,2015−2016年El Niño事件所引起的异常降雨事件导致2016年九龙江COD入海通量为(4.4 ± 0.9)×104 t/a,显著高于2014年、2015年及2017年的3.0×104~3.2×104 t/a。上述研究结果表明,FDOM水质浮标在线监测系统,有助于实现对陆源COD入海通量及其调控因素的长期连续高频监测,可为海洋生态环境保护和管理提供重要技术支撑。
  • 图  1  航次调查站位与浮标布设地点

    Fig.  1  Sampling stations and buoy locations

    图  2  不同季节浮标FDOM与实测COD数据的分布及二者的相关性分析

    Fig.  2  Distribution of measured COD and sensor FDOM data in different seasons and their correlation analysis

    图  3  COD实测值与拟合值的相关性(a)以及根据拟合曲线反演的2014−2018年河端COD浓度(灰线)与根据实测值外推的河端COD浓度(红点)的比较(b)

    Fig.  3  Correlation between measured COD and fitted COD (a) and comparison of river COD concentrations (red point) extrapolated from fitting curve and those extrapolated from measured COD (grey line) from 2014 to 2018 (b)

    图  4  2014−2017年Niño 3.4指数与九龙江径流量变化趋势

    Fig.  4  Variation of Niño 3.4 index and seasonal runoff of the Jiulong River watershed from 2014 to 2017

    图  5  2014−2017年暴雨事件与非暴雨事件对COD入海通量的相对贡献[19]

    Fig.  5  Relative contribution of rainstorm and non-rainstorm events on COD export flux from 2014 to 2017[19]

    图  6  2014−2017年COD入海通量的通量分解模型结果

    Fig.  6  Flux decomposition model of COD export flux from 2014 to 2017

    表  1  各季节浮标FDOM及实测COD的混合曲线及相关性方程

    Tab.  1  Mixed curves of sensor FDOM and measured COD and their correlation equations in different seasons

    时间盐度−FDOM盐度−CODFDOM−COD
    混合曲线r2混合曲线r2相关性方程r2
    2016年12月y=−0.5x+14.10.98y=−0.07x+1.90.91y=5.7x+0.70.91
    2017年2月y=−0.5x+15.30.90y=−0.06x+2.40.98y=8.8x−6.150.94
    2017年4月y=−1.1x+28.20.91y=−0.07x+2.60.96y=14x−80.96
    2018年4月y=−0.8x+24.30.81y=−0.1x+3.90.96y=6.4x−20.96
    2018年7月17日y=−0.9x+27.90.98y=−0.08x+3.30.96y=8.2x−5.30.98
    2018年7月23日y=−0.7x+24.10.98y=−0.08x+2.70.93y=8.2x+1.10.91
    2018年10月y=−0.1x+3.90.97
    下载: 导出CSV

    表  2  2014−2017年不同季节COD河端表观浓度、径流量及COD入海通量

    Tab.  2  Seasonal effective COD concentrations, total runoff and total export fluxes between 2014−2017

    时间COD浓度/
    (mg·L−1)
    径流量/
    (109 m3)
    COD入海通量/
    (104 t)
    2014年旱季(前)2.51±0.371.640.41
    梅雨期2.81±0.484.871.37
    台风期2.49±0.423.380.84
    旱季(后)2.94±0.331.350.39
    2015年旱季(前)3.08±0.510.960.30
    梅雨期2.96±0.693.000.93
    台风期2.51±0.425.681.39
    旱季(后)2.25±0.332.470.56
    2016年旱季(前)1.78±0.424.810.81
    梅雨期1.80±0.327.021.25
    台风期2.04±0.656.201.24
    旱季(后)2.10±0.455.241.14
    2017年旱季(前)2.35±0.432.420.57
    梅雨期2.68±0.435.211.27
    台风期2.49±0.523.370.84
    旱季(后)3.00±0.351.330.40
    下载: 导出CSV

    表  3  通量分解模型解析的各组分相对贡献

    Tab.  3  Quantification for each component of flux decomposition model

    年度时期CmQmCmQCQmCQCQ
    2014旱季(前)180.2%−73.3%−12.355.4%100%
    梅雨期55.0%40.6%2.5%1.9%100%
    台风期90.6%17.6%−6.8%−1.4%100%
    旱季(后)194.9%−102.3%19.0%−11.6%100%
    2015旱季(前)250.6%−163.7%36.1%−23.0%100%
    梅雨期80.9%5.8%8.1%5.2%100%
    台风期54.8%55.1%−3.7%−6.2%100%
    旱季(后)135.5%−17.3%−22.1%3.9%100%
    2016旱季(前)93.0%66.6%−31.6%−28.1%100%
    梅雨期60.3%90.9%−20.1%−31.1%100%
    台风期61.3%72.8%−14.8%−19.2%100%
    旱季(后)66.7%56.7%−14.6%−8.8%100%
    2017旱季(前)130.0%−16.4%−16.3%2.7%100%
    梅雨期59.5%51.2%−0.4%−10.3%100%
    台风期91.1%17.2%−6.9%−1.4%100%
    旱季(后)189.4%−100.6%22.1%−10.9%100%
    下载: 导出CSV
  • [1] 劳齐斌, 卜德志, 张可欣, 等. 秋冬季台湾海峡西部海域大气颗粒物中有机氯农药的污染特征及入海通量[J]. 海洋环境科学, 2019, 38(4): 602−607, 614. doi: 10.12111/j.mes20190418

    Lao Qibin, Bu Dezhi, Zhang Kexin, et al. Characteristics and dry deposition fluxes of organochlorine pesticides (OCPs) in atmospheric particulate matters in Western Taiwan Strait during autumn and winter[J]. Marine Environmental Science, 2019, 38(4): 602−607, 614. doi: 10.12111/j.mes20190418
    [2] 刘汉霖, 聂红涛, 王雅丽, 等. 基于统计数据的滨海地区污染物入海通量计算方法研究与应用—以天津市为例[J]. 海洋环境科学, 2019, 38(6): 968−976. doi: 10.12111/j.mes20190622

    Liu Hanlin, Nie Hongtao, Wang Yali, et al. Estimation method of pollutant load into sea using statistical data—Tianjin City[J]. Marine Environmental Science, 2019, 38(6): 968−976. doi: 10.12111/j.mes20190622
    [3] 魏珈, 郭卫东, 王志恒, 等. 降雨事件对不同流域背景河流DOM组成及入海通量的影响[J]. 农业环境科学学报, 2016, 35(4): 737−744. doi: 10.11654/jaes.2016.04.018

    Wei Jia, Guo Weidong, Wang Zhiheng, et al. Impacts of storm event on DOM composition and flux in two Jiulong Tributaries with different watershed features[J]. Journal of Agro-Environment Science, 2016, 35(4): 737−744. doi: 10.11654/jaes.2016.04.018
    [4] Nellemann C, Hain S, Alder J. In Dead Water: Merging of Climate Change with Pollution, Over-Harvest, and Infestations in the World’s Fishing Grounds[M]. Norway: United Nations Environment Programme (UNEP), 2008.
    [5] Ebi K L, Bowen K. Extreme events as sources of health vulnerability: Drought as an example[J]. Weather and Climate Extremes, 2016, 11: 95−102. doi: 10.1016/j.wace.2015.10.001
    [6] Chen Nengwang, Wu Jiezhong, Hong Huasheng. Effect of storm events on riverine nitrogen dynamics in a subtropical watershed, southeastern China[J]. Science of the Total Environment, 2012, 431: 357−365. doi: 10.1016/j.scitotenv.2012.05.072
    [7] Yang Liyang, Hur J, Lee S, et al. Dynamics of dissolved organic matter during four storm events in two forest streams: source, export, and implications for harmful disinfection byproduct formation[J]. Environmental Science and Pollution Research, 2015, 22(12): 9173−9183. doi: 10.1007/s11356-015-4078-6
    [8] 陈拥, 魏珈, 林彩, 等. 基于CDOM光学特性的近海环境富营养化监测[J]. 光谱学与光谱分析, 2017, 37(12): 3803−3808.

    Chen Yong, Wei Jia, Lin Cai, et al. Based on optical properties of chromophoric dissolved organic matter in the monitoring of coastal eutrophication[J]. Spectroscopy and Spectral Analysis, 2017, 37(12): 3803−3808.
    [9] Coble P G, Gagosian R B, Codispoti L A, et al. Vertical distribution of dissolved and particulate fluorescence in the Black Sea[J]. Deep-Sea Research Part A. Oceanographic Research Papers, 1991, 38(S2): S985−S1001.
    [10] 崔扬, 朱广伟, 张运林, 等. 湖库富营养化指标的高频监测方法研究[J]. 环境科学学报, 2014, 34(5): 1178−1185.

    Cui Yang, Zhu Guangwei, Zhang Yunlin, et al. Estimation of lake trophic level index with high-frequency sensor parameters[J]. Acta Scientiae Circumstantiae, 2014, 34(5): 1178−1185.
    [11] 郭卫东, 黄建平, 洪华生, 等. 河口区溶解有机物三维荧光光谱的平行因子分析及其示踪特性[J]. 环境科学, 2010, 31(6): 1419−1427.

    Guo Weidong, Huang Jianping, Hong Huasheng, et al. Resolving excitation emission matrix spectroscopy of estuarine CDOM with parallel factor analysis and its application in organic pollution monitoring[J]. Environmental Science, 2010, 31(6): 1419−1427.
    [12] 黄妙芬, 宋庆君, 毛志华, 等. 应用CDOM光学特性估算水体COD——以辽宁省盘锦市双台子河和辽东湾为例[J]. 海洋学报, 2011, 33(3): 47−54.

    Huang Miaofen, Song Qingjun, Mao Zhihua, et al. The retrieval model for COD in waters using optical absorption properties of CDOM—a case study at the Shuangtaizi River and the Liaodong Gulf[J]. Haiyang Xuebao, 2011, 33(3): 47−54.
    [13] 袁媛, 高辉, 贾小龙, 等. 2014−2016年超强厄尔尼诺事件的气候影响[J]. 气象, 2016, 42(5): 532−539. doi: 10.7519/j.issn.1000-0526.2016.05.002

    Yuan Yuan, Gao Hui, Jia Xiaolong, et al. Influences of the 2014−2016 Super El Niño event on climate[J]. Meteorological Monthly, 2016, 42(5): 532−539. doi: 10.7519/j.issn.1000-0526.2016.05.002
    [14] 陈洁鹏, 温之平, 王鑫. 2015/2016超强El Niño对中国南方冬春季降水的影响分析[J]. 大气科学学报, 2016, 39(6): 813−826.

    Chen Jiepeng, Wen Zhiping, Wang Xin. Analysis of winter and spring precipitation over Southern China during 2015/2016 extreme El Niño[J]. Transactions of Atmospheric Sciences, 2016, 39(6): 813−826.
    [15] Ma Feng, Ye Aizhong, You Jinjun, et al. 2015−16 floods and droughts in China, and its response to the strong El Niño[J]. Science of the Total Environment, 2018, 627: 1473−1484. doi: 10.1016/j.scitotenv.2018.01.280
    [16] 黄秀琴. 九龙江流域水文特性[J]. 水利科技, 2008(1): 16−20.

    Huang Xiuqin. Hydrological characteristics of Jiulong River basin[J]. Hydraulic Science and Technology, 2008(1): 16−20.
    [17] 陈能汪. 全球变化下九龙江河流−河口系统营养盐循环过程、通量与效应[J]. 海洋地质与第四纪地质, 2018, 38(1): 23−31.

    Chen Nengwang. Nutrient cycling processes, fluxes and effects in the Jiulong river-estuary system under global change[J]. Marine Geology & Quaternary Geology, 2018, 38(1): 23−31.
    [18] 颜秀丽, 翟惟东, 洪华生, 等. 九龙江口营养盐的分布、通量及其年代际变化[J]. 科学通报, 2012, 57(17): 1578−1587.

    Yan Xiuli, Zhai Weidong, Hong Huasheng, et al. Distribution, fluxes and decadal changes of nutrients in the Jiulong River Estuary, Southwest Taiwan Strait[J]. Chinese Science Bulletin, 2012, 57(17): 1578−1587.
    [19] Gao Xinjuan, Chen Nengwang, Yu Dan, et al. Hydrological controls on nitrogen (ammonium versus nitrate) fluxes from river to coast in a subtropical region: Observation and modeling[J]. Journal of Environmental Management, 2018, 213: 382−391.
    [20] Cai Weijun. Riverine inorganic carbon flux and rate of biological uptake in the Mississippi River plume[J]. Geophysical Research Letters, 2003, 30(2): 1032.
    [21] Hur J, Cho J. Prediction of BOD, COD, and total nitrogen concentrations in a typical urban river using a fluorescence excitation-emission matrix with PARAFAC and UV absorption indices[J]. Sensors, 2012, 12(1): 972−986. doi: 10.3390/s120100972
    [22] Guo Weidong, Yang Liyang, Hong Huasheng, et al. Assessing the dynamics of chromophoric dissolved organic matter in a subtropical estuary using parallel factor analysis[J]. Marine Chemistry, 2011, 124(1/4): 125−133.
    [23] Hong Huasheng, Yang Liyang, Guo Weidong, et al. Characterization of dissolved organic matter under contrasting hydrologic regimes in a subtropical watershed using PARAFAC model[J]. Biogeochemistry, 2012, 109(1/3): 163−174.
    [24] 厦门市气象局. 2016年厦门市气候公报[R]. 厦门: 厦门市气象局, 2016: 2−4.

    Xiamen Meteorological Bureau. 2016 Xiamen Climate Bulletin[R]. Xiamen: Xiamen Meteorological Bureau, 2016: 2−4.
    [25] Chen Jiepeng, Wang Xin, Zhou Wen, et al. Unusual rainfall in Southern China in decaying August during extreme El Niño 2015−2016: Role of the western Indian Ocean and North Tropical Atlantic SST[J]. Journal of Climate, 2018, 31(17): 7019−7034. doi: 10.1175/JCLI-D-17-0827.1
    [26] Ribarova I, Ninov P, Cooper D. Modeling nutrient pollution during a first flood event using HSPF software: Iskar River case study, Bulgaria[J]. Ecological Modelling, 2008, 211(1/2): 241−246.
    [27] Chen Nengwang, Wu Yinqi, Chen Zhuhong, et al. Phosphorus export during storm events from a human perturbed watershed, southeast China: Implications for coastal ecology[J]. Estuarine, Coastal and Shelf Science, 2015, 166: 178−188. doi: 10.1016/j.ecss.2015.03.023
    [28] 郭卫东, 王超, 徐静, 等. 海洋有机质的光谱分析方法评述[J]. 海洋通报, 2018, 37(4): 601−614.

    Guo Weidong, Wang Chao, Xu Jing, et al. A review on the spectral analysis of marine organic matter[J]. Marine Science Bulletin, 2018, 37(4): 601−614.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  292
  • HTML全文浏览量:  88
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-04
  • 修回日期:  2020-09-15
  • 网络出版日期:  2021-07-05
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回