留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CESM模式的局地化粒子滤波器与集合卡尔曼滤波器同化实验

张钰婷 沈浙奇 伍艳玲

张钰婷,沈浙奇,伍艳玲. 基于CESM模式的局地化粒子滤波器与集合卡尔曼滤波器同化实验[J]. 海洋学报,2021,43(10):1–13 doi: 10.12284/hyxb2021139
引用本文: 张钰婷,沈浙奇,伍艳玲. 基于CESM模式的局地化粒子滤波器与集合卡尔曼滤波器同化实验[J]. 海洋学报,2021,43(10):1–13 doi: 10.12284/hyxb2021139
Zhang Yuting,Shen Zheqi,Wu Yanling. Data assimilation experiments using Localized Particle Filter and Ensemble Kalman Filter with community earth system model[J]. Haiyang Xuebao,2021, 43(10):1–13 doi: 10.12284/hyxb2021139
Citation: Zhang Yuting,Shen Zheqi,Wu Yanling. Data assimilation experiments using Localized Particle Filter and Ensemble Kalman Filter with community earth system model[J]. Haiyang Xuebao,2021, 43(10):1–13 doi: 10.12284/hyxb2021139

基于CESM模式的局地化粒子滤波器与集合卡尔曼滤波器同化实验

doi: 10.12284/hyxb2021139
基金项目: 国家重点研发计划“海洋环境安全保障”重点专项(2016YFC1401701);自然资源部第二海洋研究所基本科研业务费专项(QNYC1903);国家自然科学基金(41606012,41690124,41805066,41806032)
详细信息
    作者简介:

    张钰婷(1996-),女,浙江省余姚市人,硕士,主要从事耦合模式资料同化研究。E-mail:zyt_ocean@163.com

    通讯作者:

    沈浙奇(1984-)男,浙江省杭州市人,副教授,主要从事耦合资料同化系统研发,资料同化方法和目标观测方法研究。Email:zqshen@sio.org.cn

Data assimilation experiments using Localized Particle Filter and Ensemble Kalman Filter with community earth system model

  • 摘要: 粒子滤波器(PF)是一种非常具有应用前景的非线性资料同化方法。但由于其算法本身存在的粒子退化问题,目前尚未被广泛地应用于大型地球物理模式。目前主流的集合同化系统仍然倾向于使用集合卡尔曼滤波器(EnKF)及其衍生方法。一种新近被提出的局地化粒子滤波器(LPF)在经典的粒子滤波器算法中引入局地化技术,可以使用较小的计算成本有效地避免退化问题,具有非常大的业务应用潜力。本文在全耦合的通用地球系统模式中开展了LPF和EnKF的同化实验,同化资料为模拟的卫星海表温度资料。着重考察了不同局地化参数对两种方法的不同影响,对比了局地化粒子滤波器与集合卡尔曼滤波器的同化效果差异。比较的结果表明,LPF的同化效果对于局地化参数的选择非常敏感,在使用最优局地化参数的条件下,LPF能达到与EnKF相当甚至优于后者的同化效果,并具有较大的改进空间。
  • 图  1  观测系统模拟试验流程图设计

    Fig.  1  Flow chart design of observation system simulation experiment

    图  2  不同垂向局地化方案EAKF实验中区域平均(0°~360°E,60°S~60°N)垂向均方根误差

    a.温度(单位:℃);b.盐度

    Fig.  2  Regional mean (0°−360°E, 60°S−60°N) root mean square error (RMSE) in EAKF experiments with different vertical localization schemes

    a.Temperature (Unit:℃); b.salinity

    图  3  不同局地化参数EAKF实验中区域平均(60°S~60°N,0°~360°E)的RMSE时间序列

    a.海表温度;b.海表盐度;c.海表高度;d.200 m的温度;e.200 m的盐度

    Fig.  3  RMSE time series of regional mean (60°S−60°N, 0°−360°E) in EAKF experiments with different local parameters

    a.Sea surface temperature; b.sea surface salinity; c.sea surface height; d.temperature at 200 m; e.salinity of 200 m

    图  4  海表温度相关系数

    a-f. 相对于(0°N,180°W)位置处海表温度相关系数;g-l. 相对于(20°S,120°W)位置处海表温度相关系数;m-r. 相对于(20°S,60°E)位置处海表温度相关系数;s-x. 相对于(20°N,40°W)位置处海表温度相关系数;a, g, m, s. 局地化参数为0.05时海表温度有效相关系数;b, h, n, t. 局地化参数为0.1时海表温度有效相关系数;c, i, o, u. 局地化参数为0.2时海表温度有效相关系数;d, j, p, v.局地化参数为0.3时海表温度有效相关系数;e, k, q, w. 无局地化时海表温度样本相关系数;f, l, r, x. HadiSST资料海表温度分析相关系数。空白区域代表相关系数小于0的区域

    Fig.  4  Correlation coefficient of sea surface temperature

    a-f. Relative to (0°N, 180°W); g-l. relative to (20°S, 120°W); m-r. relative to (20°S, 60°E); s-x. relative to (20°N, 40°W). a, g, m, s. Effective correlation coefficient of sea surface temperature when local parameter is 0.05; b, h, n, t. effective correlation coefficient of sea surface temperature when the local parameter is 0.1; c, i, o, u. effective correlation coefficient of sea surface temperature when the local parameter is 0.2; d, j, p, v. effective correlation coefficient of sea surface temperature when the local parameter is 0.3; e, k, q, w. sample correlation coefficient of sea surface temperature without localization; f, l, r, x. analytical correlation coefficient of sea surface temperature. The areas in which correlation coefficients are smaller than 0 are blanked

    图  5  不同垂向局地化方案LPF实验中区域平均(60°S~60°N,0°~360°E)垂向均方根误差

    a.温度;b.盐度

    Fig.  5  Regional mean (60°S−60°N, 0°−360°E) root mean square error in LPF experiments with different vertical localization schemes

    a. Temperatur; b.salinity

    图  6  不同局地化参数LPF实验中区域平均(60°S~60°N,0°~360°E)垂向均方根误差

    a.温度;b.盐度

    Fig.  6  Regional mean vertical root mean square error (60°S−60°N, 0°−360°E) in LPF experiments with different local parameters

    a.Temperature; b.salinity

    图  7  不同局地化参数LPF实验中区域平均(60°S−60°N,0°−360°E)均方根误差时间序列

    Fig.  7  Regional mean (60°S−60°N, 0°−360°E) RMSE time series in the experiments of LPF with different local parameters

    图  8  最优局地化参数EAKF、LPF对比实验中区域平均(60°S~60°N,0°~360°E)垂向均方根误差

    a.温度;b.盐度

    Fig.  8  Regional mean (60°S−60°N, 0°−360°E) vertical root-mean-square error in the experiments of EAKF and LPF with best local parameters

    a.Temperature; b.salinity

    图  9  最优局地化参数EAKF、LPF实验均方根误差之差空间分布

    Fig.  9  Spatial distribution of the difference between the root mean square error (RMSE) of the EAKF and LPF experiments

    表  1  实验列表

    Tab.  1  Experimental list

    实验名称同化方法v/(rad·m−1c/rad
    EAKF垂向局地化
    方案实验
    Kc0.1v1000EAKF1 0000.1
    Kc0.1v15001 5000.1
    Kc0.1v20002 0000.1
    EAKF局地化参数实验Kc0.1vinfEAKF$ {\infty } $0.1
    Kc0.05vinf$ {\infty } $0.05
    Kc0.1vinf$ {\infty } $0.1
    Kc0.2vinf$ {\infty } $0.2
    Kc0.3vinf$ {\infty } $0.3
    LPF垂向局地化
    方案实验
    Pc0.1v500LPF5000.1
    Pc0.1v10001 0000.1
    Pc0.1v15001 5000.1
    LPF局地化参数实验Pc0.1vinfLPF$ {\infty } $0.1
    Pc0.05v20002 0000.05
    Pc0.1v10001 0000.1
    Pc0.2v5005000.2
    控制实验FREERUN无同化
    下载: 导出CSV

    表  2  SST相关系数虚假相关占比

    Tab.  2  Proportion of false correlation in SST correlation coefficient

    虚假相关占比(%)
    位置局地化参数c
    0.050.10.20.3无局地化
    (0°N,180°W)0.003 40.000 93.699 614.947 4264.448 6
    (20°S,120°W)0.014 40.004 00.556 41.110 1381.896 4
    (20°S,60°E)0.013 90.004 30.059 31.045 0258.742 8
    (20°N,40°W)0.011 00.006 30.191 71.565 5250.448 1
    平均0.010 70.003 91.126 84.667 0288.884 0
    下载: 导出CSV

    表  3  最优局地化参数EAKF、LPF不同区域平均RMSE、IOA对比表:海表温度(a);海表盐度(b);海表高度(c)

    Tab.  3  Comparison table of mean RMSE and IOA of EAKF and LPF in different regions: sea surface temperature (a); sea surface salinity (b); sea surface height (c)

    最优EAKF与LPF全球海洋不同区域海表温度RMSE及IOA对比表(后6个月平均)
    (a)区域FREERUNEAKFLPF
    RMSE/℃RMSE/℃IOA/%RMSE/℃IOA/%
    全球1.1610.23779.590.20282.60
    太平洋1.1790.21881.510.18983.97
    大西洋1.1830.25778.280.21781.66
    印度洋1.0380.25175.820.20480.35
    最优EAKF与LPF全球海洋不同区域海表盐度RMSE及IOA对比表(后6个月平均)
    (b)区域FREERUNEAKFLPF
    RMSERMSEIOA/%RMSEIOA/%
    全球0.3530.29815.580.29317.00
    太平洋0.3820.31218.320.31417.80
    大西洋0.3430.28616.620.26722.16
    印度洋0.2900.2851.720.2832.41
    最优EAKF与LPF全球海洋不同区域海表高度RMSE及IOA对比表(后6个月平均)
    (c)区域FREERUNEAKFLPF
    RMSE/cmRMSE/cmIOA/%RMSE/cmIOA/%
    全球6.254.3530.404.7324.32
    太平洋7.465.3528.285.7722.65
    大西洋4.542.9734.583.4025.11
    印度洋5.253.4334.673.7428.76
    下载: 导出CSV
  • [1] 李宏, 许建平. 资料同化技术的发展及其在海洋科学中的应用[J]. 海洋通报, 2011, 30(4): 463−472. doi: 10.3969/j.issn.1001-6392.2011.04.018

    Li Hong, Xu Jianping. Development of data assimilation and its application in ocean science[J]. Marine Science Bulletin, 2011, 30(4): 463−472. doi: 10.3969/j.issn.1001-6392.2011.04.018
    [2] Evensen G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics[J]. Journal of Geophysical Research: Oceans, 1994, 99(C5): 10143−10162. doi: 10.1029/94JC00572
    [3] van Leeuwen P J. Particle filtering in geophysical systems[J]. Monthly Weather Review, 2009, 137(12): 4089−4114. doi: 10.1175/2009MWR2835.1
    [4] Anderson J L. An ensemble adjustment Kalman filter for data assimilation[J]. Monthly Weather Review, 2001, 129(12): 2884−2903. doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
    [5] Zhang S, Harrison M J, Rosati A, et al. System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies[J]. Monthly Weather Review, 2007, 135(10): 3541−3564. doi: 10.1175/MWR3466.1
    [6] Le Gland F, Monbet V, Tran V D. Large sample asymptotics for the ensemble Kalman filter[M]//Crisan D. The Oxford Handbook of Nonlinear Filtering. Oxford University Press, 2011: 598−634.
    [7] Shen Zheqi, Zhang Xiangming, Tang Youmin. Comparison and combination of EAKF and SIR-PF in the Bayesian filter framework[J]. Acta Oceanologica Sinica, 2016, 35(3): 69−78. doi: 10.1007/s13131-015-0757-x
    [8] Penny S G, Miyoshi T. A local particle filter for high-dimensional geophysical systems[J]. Nonlinear Processes in Geophysics, 2016, 23(6): 391−405. doi: 10.5194/npg-23-391-2016
    [9] Farchi A, Bocquet M. Review article: Comparison of local particle filters and new implementations[J]. Nonlinear Processes in Geophysics, 2018, 25(4): 765−807. doi: 10.5194/npg-25-765-2018
    [10] Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing, 2000, 10(3): 197−208. doi: 10.1023/A:1008935410038
    [11] Zhu Mengbin, van Leeuwen P J, Amezcua J. Implicit equal-weights particle filter[J]. Quarterly Journal of the Royal Meteorological Society, 2016, 142(698): 1904−1919. doi: 10.1002/qj.2784
    [12] Shen Zheqi, Tang Youmin. A modified ensemble Kalman particle filter for non-Gaussian systems with nonlinear measurement functions[J]. Journal of Advances in Modeling Earth Systems, 2015, 7(1): 50−66. doi: 10.1002/2014MS000373
    [13] Poterjoy J. A localized particle filter for high-dimensional nonlinear systems[J]. Monthly Weather Review, 2016, 144(1): 59−76. doi: 10.1175/MWR-D-15-0163.1
    [14] Whitaker J S, Hamill T M. Evaluating methods to account for system errors in ensemble data assimilation[J]. Monthly Weather Review, 2012, 140(9): 3078−3089. doi: 10.1175/MWR-D-11-00276.1
    [15] Shen Zheqi, Tang Youmin, Li Xiaojing. A new formulation of vector weights in localized particle filters[J]. Quarterly Journal of the Royal Meteorological Society, 2017, 143(709): 3269−3278. doi: 10.1002/qj.3180
    [16] Anderson J, Hoar T, Raeder K, et al. The data assimilation research testbed: A community facility[J]. Bulletin of the American Meteorological Society, 2009, 90(9): 1283−1296. doi: 10.1175/2009BAMS2618.1
    [17] Anderson J L. Localization and sampling error correction in ensemble Kalman filter data assimilation[J]. Monthly Weather Review, 2012, 140(7): 2359−2371. doi: 10.1175/MWR-D-11-00013.1
    [18] Reynolds R W. Impact of Mount Pinatubo aerosols on satellite-derived sea surface temperatures[J]. Journal of Climate, 1993, 6(4): 768−774. doi: 10.1175/1520-0442(1993)006<0768:IOMPAO>2.0.CO;2
    [19] Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D14): 4407. doi: 10.1029/2002JD002670
    [20] GaspriI G, Cohn S E. Construction of correlation functions in two and three dimensions[J]. Quarterly Journal of the Royal Meteorological Society, 1999, 125(554): 723−757. doi: 10.1002/qj.49712555417
    [21] 沈浙奇, 唐佑民, 高艳秋. 集合资料同化方法的理论框架及其在海洋资料同化的研究展望[J]. 海洋学报, 2016, 38(3): 1−14.

    Shen Zheqi, Tang Youmin, Gao Yanqiu. The theoretical framework of the ensemble-based data assimilation method and its prospect in oceanic data assimilation[J]. Haiyang Xuebao, 2016, 38(3): 1−14.
    [22] Evensen G. The ensemble Kalman filter: Theoretical formulation and practical implementation[J]. Ocean Dynamics, 2003, 53(4): 343−367. doi: 10.1007/s10236-003-0036-9
    [23] Hamill T M, Whitaker J S, Snyder C. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter[J]. Monthly Weather Review, 2001, 129(11): 2776−2790. doi: 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2
    [24] Frei M, Künsch H R. Bridging the ensemble Kalman and particle filters[J]. Biometrika, 2013, 100(4): 781−800. doi: 10.1093/biomet/ast020
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  23
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-28
  • 修回日期:  2021-01-14
  • 网络出版日期:  2021-06-02

目录

    /

    返回文章
    返回