留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

破碎波冲击直立桩柱的大比尺试验研究

台兵 马玉祥 杨思宇 张华庆 陈松贵 董国海

台兵,马玉祥,杨思宇,等. 破碎波冲击直立桩柱的大比尺试验研究[J]. 海洋学报,2021,43(10):97–105 doi: 10.12284/hyxb2021137
引用本文: 台兵,马玉祥,杨思宇,等. 破碎波冲击直立桩柱的大比尺试验研究[J]. 海洋学报,2021,43(10):97–105 doi: 10.12284/hyxb2021137
Tai Bing,Ma Yuxiang,Yang Siyu, et al. Experimental investigation of breaking waves impacting a vertical pile in a large model scale[J]. Haiyang Xuebao,2021, 43(10):97–105 doi: 10.12284/hyxb2021137
Citation: Tai Bing,Ma Yuxiang,Yang Siyu, et al. Experimental investigation of breaking waves impacting a vertical pile in a large model scale[J]. Haiyang Xuebao,2021, 43(10):97–105 doi: 10.12284/hyxb2021137

破碎波冲击直立桩柱的大比尺试验研究

doi: 10.12284/hyxb2021137
基金项目: 国家自然科学基金(51679031,51979029,51720105010);辽宁省兴辽人才计划(XLYC1807010);中央高校基本科研业务费(DUT2019TB02,TKS20200402);天津市科技计划项目(17PTYPHZ00080)
详细信息
    作者简介:

    台兵(1994-),男,湖北省钟祥市人,博士研究生,主要从事极端波浪与结构物作用的研究。E-mail:1207549623@qq.com

    通讯作者:

    张华庆,研究员,主要从事港口及航道工程、水流泥沙及水动力理论等方面的研究。E-mail:tjzhq1@163.com

  • 中图分类号: TV139.2+5

Experimental investigation of breaking waves impacting a vertical pile in a large model scale

  • 摘要: 波浪破碎是海洋中最常见的现象之一,其能够对海洋中的结构物产生巨大的波浪力作用。本文在大比尺波浪水槽通过聚焦波的方法生成了极端波浪和不同破碎阶段的破碎波浪,并对其冲击桩柱过程中的点压力进行了测量,进而采用连续小波变换的方法,对桩柱上点压力的分布及大小进行了细致分析。结果表明,多次重复试验下,相比非破碎极端波浪,破碎极端波浪产生的点压力离散性更强;波浪破碎程度越大,测点位置越靠近波峰,则点压力离散程度越大;破碎波的最大点压力出现在1.2倍的最大波面附近,且其大小可达3倍的最大静水压力;基于点压力小波谱,不同破碎阶段破碎波产生冲击作用不同,对于波浪作用桩柱前波浪已经发生破碎的情况,其冲击区域更大,点压力分布更复杂;而对于桩面破碎的情况,其造成的波浪总力更大。
  • 图  1  试验布置图及试验现场照片

    Fig.  1  Sketch of the experimental setup and the photographs of the experiment

    图  2  点压力布置图

    Fig.  2  Layout of the pressure transducers

    图  3  破碎波作用圆柱拍摄图像

    Fig.  3  Photographs of the breaking waves impacting the pile

    图  4  多次重复试验的波面情况(黑实线为平均值;红色偏差带由标准差计算)

    Fig.  4  Measured surface elevations for repeat times (black solid curve is the mean value and the red error band is calculated by its standard deviation)

    图  5  不同区域测量点压力与静水压力对比(组况P2)

    Fig.  5  Comparison between the measured pressures and the hydrostatic pressures at different locations (case P2)

    图  6  重复试验下不同组况下桩柱各测点点压力最大值

    Fig.  6  Maximum measured pressures at different locations for different cases with their repeat times

    图  7  不同破碎组况下测量点压力的连续小波变换频谱图

    Fig.  7  The wavelet spectrums of measured pressures for different cases

    图  8  破碎组况下桩柱迎浪面受力情况

    Fig.  8  Wave loads on the front of the pile under breaking waves

    表  1  试验组况

    Tab.  1  List of all the cases

    组况名称理论聚焦位置xf/m线性聚焦波幅 A/m是否破碎波浪破碎相对桩柱位置测量最大波面/m
    平均值$ {\bar \eta _{\max }} $标准差标准差/平均值
    组况P12421.15破碎桩柱前方破碎0.7780.0465.9%
    组况P22431.15破碎桩柱面前破碎0.8710.0384.4%
    组况P32461.15破碎桩柱后方破碎0.8500.0202.3%
    组况N12461.10未破碎0.8060.0364.5%
    组况N22460.90未破碎0.6770.0162.4%
    组况N32460.70未破碎0.5810.0061.0%
    下载: 导出CSV
  • [1] 刘殿勇. 弱三维波浪破碎的实验研究[D]. 大连: 大连理工大学, 2018.

    Liu Dianyong. Experimental investigation of weakly three-dimensional wave breaking[D]. Dalian: Dalian University of Technology, 2018.
    [2] Wienke J, Oumeraci H. Breaking wave impact force on a vertical and inclined slender pile-theoretical and large-scale model investigations[J]. Coastal Engineering, 2005, 52(5): 435−462. doi: 10.1016/j.coastaleng.2004.12.008
    [3] 赫岩莉, 马玉祥, 马小舟, 等. 有限水深下独立波群的能量变化试验研究[J]. 海洋工程, 2019, 37(1): 56−63, 74.

    He Yanli, Ma Yuxiang, Ma Xiaozhou, et al. Experimental investigation on energy evolution of single wave group at finite water depth[J]. The Ocean Engineering, 2019, 37(1): 56−63, 74.
    [4] Chan E S, Cheong H F, Tan B C. Laboratory study of plunging wave impacts on vertical cylinders[J]. Coastal Engineering, 1995, 25(1/2): 87−107.
    [5] Ma Yuxiang, Tai Bing, Dong Guohai, et al. Experimental study of plunging solitary waves impacting a vertical slender cylinder[J]. Ocean Engineering, 2020, 202: 107197.
    [6] Tai Bing, Ma Yuxiang, Niu Xuyang, et al. Experimental investigation of impact forces induced by plunging breakers on a vertical cylinder[J]. Ocean Engineering, 2019, 189: 106362. doi: 10.1016/j.oceaneng.2019.106362
    [7] Dias F, Ghidaglia J M. Slamming: Recent progress in the evaluation of impact pressures[J]. Annual Review of Fluid Mechanics, 2018, 50(1): 243−273. doi: 10.1146/annurev-fluid-010816-060121
    [8] Bredmose H, Bullock G N, Hogg A J. Violent breaking wave impacts. Part 3. Effects of scale and aeration[J]. Journal of Fluid Mechanics, 2015, 765: 82−113. doi: 10.1017/jfm.2014.692
    [9] 董玉山. LNG液舱晃荡冲击比尺效应的实验研究[D]. 大连: 大连理工大学, 2015.

    Dong Yushan. Experimental investigation of scaling effects on sloshing impact in LNG tanks[D]. Dalian: Dalian University of Technology, 2015.
    [10] Bogaert H. An experimental investigation of sloshing impact physics in membrane LNG tanks on floating structures[D]. Delft: Delft University of Technology, 2018.
    [11] Hofland B, Kaminski M L, Wolters G. Large scale wave impacts on a vertical wall[J]. Coastal Engineering Proceedings, 2011, 1(32): 15.
    [12] Hildebrandt A. Hydrodynamics of breaking waves on offshore wind turbine structures[D]. Hannover: Leibniz Universität Hannover, 2013.
    [13] 陈松贵, 郑金海, 王泽明, 等. 珊瑚岛礁护岸对礁坪上极端波浪传播特性的影响[J]. 水利水运工程学报, 2019(6): 59−68. doi: 10.12170/201906007

    Chen Songgui, Zheng Jinhai, Wang Zeming, et al. Experimental study on impact of revetments on extreme wave propagation characteristics on coral reefs[J]. Hydro-Science and Engineering, 2019(6): 59−68. doi: 10.12170/201906007
    [14] 耿宝磊, 郑宝友, 孟祥玮, 等. 天科院大比尺波浪水槽的建设与应用前景[J]. 水道港口, 2014, 35(4): 415−421. doi: 10.3969/j.issn.1005-8443.2014.04.026

    Geng Baolei, Zheng Baoyou, Meng Xiangwei, et al. Construction and application prospect of the large scale wave flume in TIWTE[J]. Journal of Waterway and Harbor, 2014, 35(4): 415−421. doi: 10.3969/j.issn.1005-8443.2014.04.026
    [15] Liu Dianyong, Ma Yuxiang, Dong Guohai, et al. An experimental study of weakly three-dimensional non-breaking and breaking waves[J]. European Journal of Mechanics-B/Fluids, 2015, 52: 206−216. doi: 10.1016/j.euromechflu.2015.03.007
    [16] Paulsen B T, de Sonneville B, van der Meulen M, et al. Probability of wave slamming and the magnitude of slamming loads on offshore wind turbine foundations[J]. Coastal Engineering, 2019, 143: 76−95. doi: 10.1016/j.coastaleng.2018.10.002
    [17] Ma Yuxiang, Dong Guohai, Perlin M, et al. Higher-harmonic focused-wave forces on a vertical cylinder[J]. Ocean Engineering, 2009, 36(8): 595−604. doi: 10.1016/j.oceaneng.2009.02.009
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  39
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-08
  • 修回日期:  2021-04-05
  • 网络出版日期:  2021-08-26
  • 刊出日期:  2021-10-30

目录

    /

    返回文章
    返回