留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于无人机高光谱特征的红树林种群识别研究

周在明 陈本清 徐冉 方维

周在明,陈本清,徐冉,等. 基于无人机高光谱特征的红树林种群识别研究−以漳江口红树林国家级自然保护区为例[J]. 海洋学报,2021,43(9):137–145 doi: 10.12284/hyxb2021136
引用本文: 周在明,陈本清,徐冉,等. 基于无人机高光谱特征的红树林种群识别研究−以漳江口红树林国家级自然保护区为例[J]. 海洋学报,2021,43(9):137–145 doi: 10.12284/hyxb2021136
Zhou Zaiming,Chen Benqing,Xu Ran, et al. Identification of the mangrove species using UAV hyperspectral images: A case study of Zhangjiangkou mangrove national nature reserve[J]. Haiyang Xuebao,2021, 43(9):137–145 doi: 10.12284/hyxb2021136
Citation: Zhou Zaiming,Chen Benqing,Xu Ran, et al. Identification of the mangrove species using UAV hyperspectral images: A case study of Zhangjiangkou mangrove national nature reserve[J]. Haiyang Xuebao,2021, 43(9):137–145 doi: 10.12284/hyxb2021136

基于无人机高光谱特征的红树林种群识别研究以漳江口红树林国家级自然保护区为例

doi: 10.12284/hyxb2021136
基金项目: NSFC-山东联合基金(U1806203)
详细信息
    作者简介:

    周在明(1980—),男,山东省淄博市人,副研究员,主要从事生态环境遥感研究工作。E-mail:zhouzaiming@tio.org.cn

  • 中图分类号: P407.8; S718.54

Identification of the mangrove species using UAV hyperspectral images: A case study of Zhangjiangkou mangrove national nature reserve

  • 摘要: 红树林种群的组成和分布对于红树林生态系统的保护和恢复至关重要。本研究以漳江口红树林保护区为研究对象,通过获取无人机高光谱影像,进行光谱特征分析、光谱微分变换和包络线去除,提取了911组17个光谱特征参数,通过逐步判别分析筛选出13个用于决策树构建的特征参数,最终通过C5.0决策树模型获得了研究区红树林种群的分布状况。结果表明,漳江口红树林保护区植被种群呈现自上到下不同类型的分布情况,研究区上部以桐花树和秋茄混合类型为主,中间区域呈现白骨壤、桐花树和秋茄三者共生的现状,研究区下部则以白骨壤分布为主,伴生有少量的秋茄。通过混淆矩阵计算,得到研究区总体分类精度为 87.95%,Kappa系数为 83.81%,具有较好的精度。研究结果可为区域红树林湿地保护提供数据支撑,为红树林种群识别研究提供方法参考。
  • 图  1  漳江口红树林研究区位置

    Fig.  1  The location of Zhangjiangkou mangrove in the study area

    图  2  研究区无人机高光谱影像图(a)和普通光学影像(b)

    Fig.  2  Unmanned aerial vehicle hyperspectral image (a) and RGB image (b) in the study area

    图  3  研究区典型植被类型光谱反射率曲线

    Fig.  3  Spectral reflectance curves of typical vegetation species in the study area

    图  4  包络线去除光谱反射率变换曲线

    Fig.  4  Spectral reflectance curves of continuum removal

    图  5  研究区典型植被类型逐步判别分析结果

    Fig.  5  Stepwise discriminant analysis result of the typical vegetation species in the study area

    图  6  研究区典型植被类型决策树模型示意图

    Fig.  6  The sketch map of decision tree classification model of the typical vegetation species in the study area

    图  7  研究区植被类型分类识别结果

    Fig.  7  Identification and classification results of the typical vegetation species in the study area

    表  1  研究区典型植被类型样本情况表

    Tab.  1  The information sheet of sample of the typical vegetation species in the study area

    植被类型桐花树白骨壤秋茄互花米草
    训练样本数458188102163
    验证样本数121948395
    下载: 导出CSV

    表  2  研究区典型植被类型“三边”参数

    Tab.  2  Three sides spectral parameters of the typical vegetation species in the study area

    植被类型DbDyDrSbSySr
    桐花树0.002−0.0140.726−0.239−0.1898.892
    白骨壤0.006−0.0310.791−0.398−0.31210.313
    秋茄0.009−0.0350.827−0.458−0.30710.292
    互花米草0.026−0.0010.245−0.076−0.0983.047
    下载: 导出CSV

    表  3  研究区典型植被类型最大峰度统计

    Tab.  3  The maximum kurtosis of the typical vegetation species in the study area

    植被类型650~700 nm700~720 nm720~750 nm
    K1B1K2B2K3B3
    桐花树0.019 96900.024 87180.031 6738
    白骨壤0.027 86900.019 47140.029 6738
    秋茄0.029 16900.023 17140.032 4730
    互花米草0.009 36900.009 37180.015 4742
      注:K1、K2、K3分别为各波段范围内的最大峰度值;B1、B2、B3分别为各峰度对应的波段值。
    下载: 导出CSV

    表  4  研究区典型植被类型包络线去除光谱吸收参数

    Tab.  4  Spectral absorption parameters after continuum removal of typical species in the study area

    植被类型H1H2AL1AL2A1A2S1S2
    桐花树0.446 70.916 015.061 086.550 724.359 9127.111 50.618 30.680 9
    白骨壤0.420 40.849 313.791 876.755 424.419 1112.484 60.564 80.682 4
    秋茄0.507 40.893 815.476 284.054 630.705 8119.929 10.504 00.700 9
    互花米草0.114 70.479 62.587 436.971 96.328 556.787 70.408 90.651 1
      注:H1、AL1、A1、S1为450~550 nm波段范围内的参数值;H2、AL2、A2、S2为550~750 nm波段范围内的参数值。
    下载: 导出CSV

    表  5  研究区典型植被分类结果混淆矩阵

    Tab.  5  Confusion matrix of classification results of the typical vegetation species in the study area

    桐花树白骨壤秋茄互花米草总计用户精度/%
    桐花树131312014689.72
    白骨壤31084612189.25
    秋茄124113313285.60
    互花米草274869986.86
    总计14812213395498
    生产精度/%88.5188.5284.9690.52
      注:−代表空值。
    下载: 导出CSV
  • [1] 王乐, 时晨, 田金炎, 等. 基于多源遥感的红树林监测[J]. 生物多样性, 2018, 26(8): 838−849. doi: 10.17520/biods.2018067

    Wang Le, Shi Chen, Tian Jinyan, et al. Researches on mangrove forest monitoring methods based on multi-source remote sensing[J]. Biodiversity Science, 2018, 26(8): 838−849. doi: 10.17520/biods.2018067
    [2] 林鹏. 中国红树林湿地与生态工程的几个问题[J]. 中国工程科学, 2003, 5(6): 33−38. doi: 10.3969/j.issn.1009-1742.2003.06.005

    Lin Peng. The characteristics of mangrove wetlands and some ecological engineering questions in China[J]. Engineering Science, 2003, 5(6): 33−38. doi: 10.3969/j.issn.1009-1742.2003.06.005
    [3] Seto K C, Fragkias M. Mangrove conversion and aquaculture development in Vietnam: a remote sensing-based approach for evaluating the Ramsar Convention on Wetlands[J]. Global Environmental Change, 2007, 17(3/4): 486−500.
    [4] Jia Mingming, Zhang Yuanzhi, Wang Zongming, et al. Mapping the distribution of mangrove species in the Core Zone of Mai Po Marshes Nature Reserve, Hong Kong, using hyperspectral data and high-resolution data[J]. International Journal of Applied Earth Observation and Geoinformation, 2014, 33: 226−231. doi: 10.1016/j.jag.2014.06.006
    [5] Jia Mingming, Wang Zongming, Zhang Yuanzhi, et al. Monitoring loss and recovery of mangrove forests during 42 years: the achievements of mangrove conservation in China[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73: 535−545. doi: 10.1016/j.jag.2018.07.025
    [6] Ciri C, Ochieng E, Tieszen L L, et al. Status and distribution of mangrove forests of the world using earth observation satellite data[J]. Global Ecology and Biogeography, 2011, 20(1): 154−159. doi: 10.1111/j.1466-8238.2010.00584.x
    [7] Wang Le, Jia Mingming, Yin Dameng, et al. A review of remote sensing for mangrove forests: 1956−2018[J]. Remote Sensing of Environment, 2019, 231: 111223. doi: 10.1016/j.rse.2019.111223
    [8] Zhu Yuanhui, Liu Kai, Liu Lin, et al. Retrieval of mangrove aboveground biomass at the individual species level with worldview-2 images[J]. Remote Sensing, 2015, 7(9): 12192−12214. doi: 10.3390/rs70912192
    [9] Wang L, Sousa W P, Gong P. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery[J]. International Journal of Remote Sensing, 2004, 25(24): 5655−5668. doi: 10.1080/014311602331291215
    [10] Everitt J H, Yang C, Sriharan S, et al. Using high resolution satellite imagery to map black mangrove on the Texas gulf coast[J]. Journal of Coastal Research, 2008, 2008(246): 1582−1586.
    [11] Hauser L T, Vu G N, Nguyen B A, et al. Uncovering the spatio-temporal dynamics of land cover change and fragmentation of mangroves in the Ca Mau peninsula, Vietnam using multi-temporal SPOT satellite imagery (2004−2013)[J]. Applied Geography, 2017, 86: 197−207. doi: 10.1016/j.apgeog.2017.06.019
    [12] Xia Qing, Qin Chengzhi, Li He, et al. Evaluation of submerged mangrove recognition index using multi-tidal remote sensing data[J]. Ecological Indicators, 2020, 113: 106196. doi: 10.1016/j.ecolind.2020.106196
    [13] 赵春晖, 王立国, 齐滨. 高光谱遥感图像处理方法及应用[M]. 北京: 电子工业出版社, 2016.

    Zhao Chunhui, Wang Liguo, Qi Bin. Hyperspectral Remote Sensing Images Processing Methods and Applications[M]. Beijing: Publishing House of Electronics Industry, 2016.
    [14] Kumar T, Panigrahy S, Kumar P, et al. Classification of floristic composition of mangrove forests using, hyperspectral data: case study of bhitarkanika national park, India[J]. Journal of Coastal Conservation, 2013, 17(1): 121−132. doi: 10.1007/s11852-012-0223-2
    [15] Wan Luoma, Lin Yinyi, Zhang Hongsheng, et al. GF-5 hyperspectral data for species mapping of mangrove in Mai Po, Hong Kong[J]. Remote Sensing, 2020, 12(4): 656. doi: 10.3390/rs12040656
    [16] Hati J P, Samanta S, Chaube N R, et al. Mangrove classification using airborne hyperspectral AVIRIS-NG and comparing with other spaceborne hyperspectral and multispectral data[J]. The Egyptian Journal of Remote Sensing and Space Science, 2021, 24(2): 273−281. doi: 10.1016/j.ejrs.2020.10.002
    [17] 刘凯, 龚辉, 曹晶晶, 等. 基于多类型无人机数据的红树林遥感分类对比[J]. 热带地理, 2019, 39(4): 492−501.

    Liu Kai, Gong Hui, Cao Jingjing, et al. Comparison of mangrove remote sensing classification based on multi-type UAV data[J]. Tropical Geography, 2019, 39(4): 492−501.
    [18] Cao Jingjing, Leng Wanchun, Liu Kai, et al. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models[J]. Remote Sensing, 2018, 10(1): 89. doi: 10.3390/rs10010089
    [19] 周振超, 李贺, 黄翀, 等. 红树林遥感动态监测研究进展[J]. 地球信息科学学报, 2018, 20(11): 1631−1643. doi: 10.12082/dqxxkx.2018.180247

    Zhou Zhenchao, Li He, Huang Chong, et al. Review on dynamic monitoring of mangrove forestry using remote sensing[J]. Journal of Geo-information Science, 2018, 20(11): 1631−1643. doi: 10.12082/dqxxkx.2018.180247
    [20] Yang Shanshan, Wang Le, Shi Chen, et al. Evaluating the relationship between the photochemical reflectance index and light use efficiency in a mangrove forest with Spartina alterniflora invasion[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 73: 778−785. doi: 10.1016/j.jag.2018.08.014
    [21] 黄冠闽. 漳江口红树林区互花米草的生长特性及其与秋茄的相对竞争力[D]. 厦门: 厦门大学, 2009.

    Huang Guanmin. The growth characteristics of Spartina alterniflora and relative competitive ability with Kandelia obovata in mangrove areas of Zhangjiang Estuary[D]. Xiamen: Xiamen University, 2009.
    [22] 王美玲, 焦琳琳, 王晓红, 等. 曹妃甸湿地典型植被光谱特征差异性分析[J]. 浙江农业学报, 2019, 31(6): 963−969. doi: 10.3969/j.issn.1004-1524.2019.06.14

    Wang Meiling, Jiao Linlin, Wang Xiaohong, et al. Differences in spectral characteristics of typical vegetation in Caofeidian wetland[J]. Acta Agriculturae Zhejiangensis, 2019, 31(6): 963−969. doi: 10.3969/j.issn.1004-1524.2019.06.14
    [23] 赵英时. 遥感应用分析原理与方法[M]. 2版. 北京: 科学出版社, 2013.

    Zhao Yingshi. Principles and Methods of Remote Sensing Application Analysis[M]. 2nd ed. Beijing: Science Press, 2013.
    [24] 岁秀珍, 陈浩. 基于高光谱的湿地植被分类研究[J]. 测绘与空间地理信息, 2019, 42(5): 137−140, 144. doi: 10.3969/j.issn.1672-5867.2019.05.042

    Sui Xiuzhen, Chen Hao. Classification of wetland vegetation based on hyperspectral[J]. Geomatics & Spatial Information Technology, 2019, 42(5): 137−140, 144. doi: 10.3969/j.issn.1672-5867.2019.05.042
    [25] 罗宁, 阮仁宗, 王俊海. 基于机器学习的高光谱湿地植被分类研究[J]. 林业调查规划, 2019, 44(3): 1−7. doi: 10.3969/j.issn.1671-3168.2019.03.001

    Luo Ning, Ruan Renzong, Wang Junhai. Classification of hyperspectral wetland vegetation based on machine learning[J]. Forest Inventory and Planning, 2019, 44(3): 1−7. doi: 10.3969/j.issn.1671-3168.2019.03.001
    [26] 史冰全, 张晓丽, 白雪琪, 等. 基于“三边”参数的油松林叶绿素估算模型[J]. 东北林业大学学报, 2015, 43(5): 80−83. doi: 10.3969/j.issn.1000-5382.2015.05.016

    Shi Bingquan, Zhang Xiaoli, Bai Xueqi, et al. Chlorophyll estimation model of Pinus tabulaeformis based on “Sanbian” parameters[J]. Journal of Northeast Forestry University, 2015, 43(5): 80−83. doi: 10.3969/j.issn.1000-5382.2015.05.016
    [27] 曾帅, 况润元, 肖阳, 等. 鄱阳湖湿地植物实测高光谱数据分类[J]. 遥感信息, 2017, 32(5): 75−81. doi: 10.3969/j.issn.1000-3177.2017.05.012

    Zeng Shuai, Kuang Runyuan, Xiao Yang, et al. Measured hyperspectral data classification of Poyang Lake wetland vegetation[J]. Remote Sensing Information, 2017, 32(5): 75−81. doi: 10.3969/j.issn.1000-3177.2017.05.012
    [28] 庞毓雯, 黄雨馨, 问静怡, 等. 泥炭藓群落的光谱特征及遥感识别研究[J]. 植物科学学报, 2019, 37(2): 125−135. doi: 10.11913/PSJ.2095-0837.2019.20125

    Pang Yuwen, Huang Yuxin, Wen Jingyi, et al. Study on the spectral characteristics and remote sensing recognition of the Sphagnum community[J]. Plant Science Journal, 2019, 37(2): 125−135. doi: 10.11913/PSJ.2095-0837.2019.20125
    [29] 王怀警, 谭炳香, 房秀凤, 等. C5.0决策树Hyperion影像森林类型精细分类方法[J]. 浙江农林大学学报, 2018, 35(4): 724−734. doi: 10.11833/j.issn.2095-0756.2018.04.018

    Wang Huaijing, Tan Bingxiang, Fang Xiufeng, et al. Precise classification of forest types use Hyperion image based on the C5.0 decision tree algorithm[J]. Journal of Zhejiang A&F University, 2018, 35(4): 724−734. doi: 10.11833/j.issn.2095-0756.2018.04.018
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  419
  • HTML全文浏览量:  171
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-08
  • 修回日期:  2021-05-06
  • 网络出版日期:  2021-06-17
  • 刊出日期:  2021-09-25

目录

    /

    返回文章
    返回