留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大小潮作用对潮滩沉积物层理影响的数值模拟研究

徐孟飘 东培华 马骏 罗锋 张长宽 范代读 周曾

徐孟飘,东培华,马骏,等. 大小潮作用对潮滩沉积物层理影响的数值模拟研究[J]. 海洋学报,2021,43(10):1–11 doi: 10.12284/hyxb2021125
引用本文: 徐孟飘,东培华,马骏,等. 大小潮作用对潮滩沉积物层理影响的数值模拟研究[J]. 海洋学报,2021,43(10):1–11 doi: 10.12284/hyxb2021125
Xu Mengpiao,Dong Peihua,Ma Jun, et al. The effects of spring-neap tide on sediment bedding on tidal flats: A numerical study[J]. Haiyang Xuebao,2021, 43(10):1–11 doi: 10.12284/hyxb2021125
Citation: Xu Mengpiao,Dong Peihua,Ma Jun, et al. The effects of spring-neap tide on sediment bedding on tidal flats: A numerical study[J]. Haiyang Xuebao,2021, 43(10):1–11 doi: 10.12284/hyxb2021125

大小潮作用对潮滩沉积物层理影响的数值模拟研究

doi: 10.12284/hyxb2021125
基金项目: 同济大学海洋地质国家重点实验室开放基金(MG201901);江苏省海洋科技创新项目重大专项(HY2018-1)
详细信息
    作者简介:

    徐孟飘(1993-),女,江苏省扬州市人,主要从事河口海岸水动力泥沙模拟研究。E-mail:mengpiao.xu@outlook.com

    通讯作者:

    周曾(1986-),教授,主要从事河口海岸地貌学研究。E-mail:zeng.zhou@hhu.edu.cn

  • 中图分类号: TV122

The effects of spring-neap tide on sediment bedding on tidal flats: A numerical study

Funds: The study is financially supported by State Key Laboratory of Marine Geology, Tongji University (No. MG201901) and Jiangsu Marine Science and Technology Innovation Programme (No. HY2018-1)
  • 摘要: 潮滩垂向沉积韵律层的形成主要取决于周期性的潮汐条件,包括涨落潮、大小潮、季节性及更长时间尺度的潮汐特征,为探究大小潮周期对潮滩沉积物垂向层理形成机制的影响,应用一维潮流泥沙与底床分层数学模型,对周期性潮汐条件作用下潮滩垂向沉积韵律层形成机制进行了数值模拟研究。结果表明大小潮的周期性是模型中沉积层理表现韵律性的主要原因之一,韵律层中单个层理结构对应于1个大小潮周期过程,层理结构由形成于小潮期间的泥质层及形成于大潮期间的砂质层组成,层理的厚度也呈旋回性变化,大潮时层理较厚而小潮时层理较薄。水体边界含沙量是影响潮汐层理结构的重要因子,边界含沙量中粉砂占比增大会使潮汐韵律层整体粗化且砂质层厚度增大,当边界含沙量整体显著增大时,潮滩上的垂向潮汐韵律层会更加完整且厚度明显增大。潮汐层理的形成与特征是多种因子共同作用的结果,后续需进一步探究包括波浪、风暴潮、潮滩生物等其他因子的作用。
  • 图  1  底床分层模型及其计算过程

    Fig.  1  Bed stratigraphy modeling and schematic diagram of calculation process

    图  2  初始床面组成

    Fig.  2  Initial bed composition

    图  3  单M2分潮作用下(a)以及大小潮作用下(b)潮滩沉积物分选、分层特征,代表点A、B、C将用作后续分析

    Fig.  3  Results of sediment sorting and layering under only M2 tide (a) and spring/neap tidal cycles (b), representative points A, B and C are used for subsequent analyses

    图  4  仅M2分潮作用下A、B、C 3点处垂向沉积物占比

    Fig.  4  Percentage of vertical sediments at points A, B and C under the action of M2 tidal constituent

    图  5  大小潮作用下A、B、C 3点处垂向沉积物占比

    Fig.  5  Percentage of vertical sediments at points A, B and C under the action of the superposition of M2 and S2 constituents

    图  7  潮位过程(a),P2点累计层数(b),含沙量变化(c)

    Fig.  7  Tidal level (a), cumulative layers (b), changes of percentage of vertical sediments (c)

    图  8  不同工况下潮间带区域黏土与粉砂占比分布对比

    Fig.  8  Distribution of clay and silt fractions in intertidal flat under different sediment concentration conditions

    图  9  代表点(离岸1 km处)不同工况下两个大小潮周期内沉积物垂向分布

    Fig.  9  Vertical distribution of sediments in two tidalcycles under different conditions at representative points

    表  1  水动力条件工况设置

    Tab.  1  Hydrodynamic condition setting

    振幅/m频率/((°)·h−1相位差/(°)
    仅M2作用M2工况12.028.985 50
    工况22.528.985 50
    工况33.028.985 50
    M2与S2叠加作用工况4M2228.985 50
    S20.4300
    工况5M2228.985 50
    S20.8300
    工况6M2228.985 50
    S21300
    下载: 导出CSV

    表  2  3种工况的边界含沙量设置

    Tab.  2  Three settings of sediment concentration

    黏土含沙量/
    (kg·m−3)
    粉砂含沙量/
    (kg·m−3)
    细砂含沙量/
    (kg·m−3)
    工况一0.0060.0040.001
    工况二0.0040.0160.001
    工况三0.0400.1600.001
    下载: 导出CSV
  • [1] Friedrichs C T. Tidal flat morphodynamics: A synthesis[M]//Wolanski E, McLusky D. Treatise on Estuarine and Coastal Science. Waltham: Academic Press, 2011: 137−170.
    [2] Choi K S, Park Y A. Late pleistocene silty tidal rhythmites in the macrotidal flat between Youngjong and Yongyou islands, west coast of Korea[J]. Marine Geology, 2000, 167(3/4): 231−241.
    [3] Fan Daidu, Li Congxian, Archer A W, et al. Temporal distribution of diastems in deposits of an open-coast tidal flat with high suspended sediment concentrations[J]. Sedimentary Geology, 2002, 152(3/4): 173−181.
    [4] 龚小辉, 柏春广, 王建. 淤泥质潮滩沉积周期性研究综述[J]. 南京师大学报(自然科学版), 2012, 35(1): 117−121.

    Gong Xiaohui, Bai Chunguang, Wang Jian. Review of research on sedimentary periodicity of tidal mud flat[J]. Journal of Nanjing Normal University (Natural Science Edition), 2012, 35(1): 117−121.
    [5] Deloffre J, Verney R, Lafite R, et al. Sedimentation on intertidal mudflats in the lower part of macrotidal estuaries: Sedimentation rhythms and their preservation[J]. Marine Geology, 2007, 241(1/4): 19−32.
    [6] 王建, 柏春广, 徐永辉. 江苏中部淤泥质潮滩潮汐层理成因机理和风暴沉积判别标志[J]. 沉积学报, 2006, 24(4): 562−569. doi: 10.3969/j.issn.1000-0550.2006.04.014

    Wang Jian, Bai Chunguang, Xu Yonghui. Mechanism of silt-mud couplet of mud tidal flat and discrimination criteria of storm surge sedimentation in the middle Jiangsu Province[J]. Acta Sedimentologica Sinica, 2006, 24(4): 562−569. doi: 10.3969/j.issn.1000-0550.2006.04.014
    [7] 范代读, 李从先, 邓兵, 等. 潮汐周期在潮坪沉积中的记录[J]. 同济大学学报, 2002, 30(3): 281−285.

    Fan Daidu, Li Congxian, Deng Bing, et al. Tidal cycles recorded in tidal-flat deposits[J]. Journal of Tongji University, 2002, 30(3): 281−285.
    [8] Fan Daidu, Guo Yanxia, Wang Ping, et al. Cross-shore variations in morphodynamic processes of an open-coast mudflat in the Changjiang Delta, China: With an emphasis on storm impacts[J]. Continental Shelf Research, 2006, 26(4): 517−538. doi: 10.1016/j.csr.2005.12.011
    [9] Young I R, Verhagen L A. The growth of fetch limited waves in water of finite depth. Part 1. Total energy and peak frequency[J]. Coastal Engineering, 1996, 29(1/2): 47−78.
    [10] van Rijn L C. Unified view of sediment transport by currents and waves. I: Initiation of motion, bed roughness, and bed-load transport[J]. Journal of Hydraulic Engineering, 2007, 133(6): 649−667. doi: 10.1061/(ASCE)0733-9429(2007)133:6(649)
    [11] Fagherazzi S, Wiberg P L. Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow intertidal basins[J]. Journal of Geophysical Research Earth Surface, 2009, 114(F3): F03022.
    [12] Roberts W, Le Hir P, Whitehouse R J S. Investigation using simple mathematical models of the effect of tidal currents and waves on the profile shape of intertidal mudflats[J]. Continental Shelf Research, 2000, 20(10/11): 1079−1097.
    [13] Green M O, Coco G. Review of wave-driven sediment resuspension and transport in estuaries[J]. Reviews of Geophysics, 2014, 52(1): 77−117. doi: 10.1002/2013RG000437
    [14] Soulsby R. Dynamics of Marine Sands: A Manual for Practical Applications[M]. Thomas: Telford, 1997.
    [15] Winterwerp J C. On the sedimentation rate of cohesive sediment[J]. Proceedings in Marine Science, 2007, 8: 209−226.
    [16] 龚政, 靳闯, 张长宽, 等. 江苏淤泥质潮滩剖面演变现场观测[J]. 水科学进展, 2014, 25(6): 880−887.

    Gong Zheng, Jin Chuang, Zhang Changkuan, et al. Surface elevation variation of the Jiangsu mudflats: Field observation[J]. Advances in Water Science, 2014, 25(6): 880−887.
    [17] Zhou Zeng, Coco G, van der Wegen M, et al. Modeling sorting dynamics of cohesive and non-cohesive sediments on intertidal flats under the effect of tides and wind waves[J]. Continental Shelf Research, 2015, 104: 76−91. doi: 10.1016/j.csr.2015.05.010
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  3
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-08
  • 修回日期:  2020-06-30
  • 网络出版日期:  2021-06-16

目录

    /

    返回文章
    返回