留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

厚壳贻贝肠道细菌的生物被膜对其幼虫和稚贝附着的影响

徐嘉康 王劲松 方怡涵 杨金龙 梁箫

徐嘉康,王劲松,方怡涵,等. 厚壳贻贝肠道细菌的生物被膜对其幼虫和稚贝附着的影响[J]. 海洋学报,2021,43(9):81–91 doi: 10.12284/hyxb2021112
引用本文: 徐嘉康,王劲松,方怡涵,等. 厚壳贻贝肠道细菌的生物被膜对其幼虫和稚贝附着的影响[J]. 海洋学报,2021,43(9):81–91 doi: 10.12284/hyxb2021112
Xu Jiakang,Wang Jinsong,Fang Yihan, et al. Effects of intestinal bacterial biofilms on settlement process of larvae and plantigrades in Mytilus coruscus[J]. Haiyang Xuebao,2021, 43(9):81–91 doi: 10.12284/hyxb2021112
Citation: Xu Jiakang,Wang Jinsong,Fang Yihan, et al. Effects of intestinal bacterial biofilms on settlement process of larvae and plantigrades in Mytilus coruscus[J]. Haiyang Xuebao,2021, 43(9):81–91 doi: 10.12284/hyxb2021112

厚壳贻贝肠道细菌的生物被膜对其幼虫和稚贝附着的影响

doi: 10.12284/hyxb2021112
基金项目: 上海市优秀学术带头人计划(20XD1421800);国家自然科学基金(41876159);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0402);国家重点研发计划项目(2020YFD0900804)。
详细信息
    作者简介:

    徐嘉康(1996-),男,辽宁省沈阳市人,从事海洋贝类分子生物学的研究。E-mail:m180100004@st.shou.edu.cn

    通讯作者:

    梁箫(1983-),女,博士,从事海洋贝类分子生物学的研究。E-mail:x-liang@shou.edu.cn

  • 中图分类号: Q178.53

Effects of intestinal bacterial biofilms on settlement process of larvae and plantigrades in Mytilus coruscus

  • 摘要: 为研究肠道细菌在厚壳贻贝(Mytilus coruscus)幼虫和稚贝生长发育过程中的作用,本研究从成体厚壳贻贝肠道中分离出了10株细菌,通过分别形成单一细菌生物被膜,检验其对厚壳贻贝幼虫和稚贝附着的影响和生物被膜特性。实验结果发现,10株肠道细菌所形成的生物被膜均能诱导厚壳贻贝幼虫和稚贝的附着,但不同种类肠道细菌的诱导能力不同,其中Bacillus sp.4对厚壳贻贝幼虫具有高诱导活性,Phaeobacter sp.1具有低诱导活性;Phaeobacter sp.1对厚壳贻贝稚贝具有高诱导活性,Bacillus sp.4具有低诱导活性。通过比较分析 Bacillus sp.4和Phaeobacter sp.1生物被膜的生物量及胞外产物发现,肠道细菌被膜细菌密度、膜厚和胞外脂类对厚壳贻贝幼虫的附着变态无影响,而胞外蛋白和胞外多糖可以影响幼虫的附着变态;对于厚壳贻贝稚贝的附着,肠道细菌被膜细菌密度、膜厚和胞外α-多糖均能影响其诱导活性,而胞外脂类和胞外蛋白无影响。本研究成果可为提高厚壳贻贝的健康生态养殖相关技术提供相关的指导,为解析生物被膜调控厚壳贻贝附着机制和该物种生态健康养殖提供理论依据。
  • 图  1  实验所用贻贝肠道细菌的表型

    Fig.  1  Phenotypes of the different bacterial strains from mussel intestinal in tested

    图  2  不同肠道细菌对厚壳贻贝的诱导作用

    A. 对幼虫变态附着的诱导活性;B. 对稚贝附着的诱导活性;不同字母表示差异显著(p<0.05)

    Fig.  2  Induction of settlement of Mytilus coruscus on the different intestinal bacterial biofilms

    A. Inducing activity of larval settlement and metamorphosis; B. inducing activity of plantigrade settlement; values that are significantly different between each other at p<0.05 are indicated by different letters

    图  3  不同肠道细菌生物被膜的细菌密度

    不同字母表示差异显著(p<0.05)

    Fig.  3  The bacterial density of different intestinal bacterial biofilms

    Values that are significantly different between each other at p<0.05 are indicated by different letters

    图  4  本实验中肠道细菌的系统进化树

    Fig.  4  Phylogenetic tree of intestinal bacterial in tested

    图  5  Bacillus sp.4和Phaeobacter sp.1的生物被膜图像(A)及膜厚(B)

    不同字母表示差异显著(p<0.05)

    Fig.  5  Biofilm images (A) and biofilm thickness (B) of Bacillus sp.4 and Phaeobacter sp.1

    Values that are significantly different between each other at p<0.05 are indicated by different letters

    图  6  生物被膜的CLSM图像分析

    脂类、蛋白质、α-多糖和β-多糖在生物被膜上的分布(A)和生物量(B);不同字母表示差异显著(p<0.05)

    Fig.  6  The analysis of CLSM images of biofilms

    The distribution (A) and biovolume (B) of lipids, proteins, α-polysaccharide and β-polysaccharide on BFs; values that are significantly different between each other at p < 0.05 are indicated by different letters

    表  1  肠道细菌16S rRNA基因序列分析

    Tab.  1  16S rRNA gene sequence analysis of the intestinal bacterial strains

    菌株来源比对菌株比对序列号测试菌株上传序列号相似度/%
    厚壳贻贝肠道Bacillus sp.4KF933662ECSMC2KU84537998
    厚壳贻贝肠道Paracoccus sp.2KJ648494ECSMC12KU84538897
    厚壳贻贝肠道Flavobacterium sp.1KF933689ECSMC8KU84538499
    厚壳贻贝肠道Arenibacter sp.1JQ898120ECSMC15KU84539399
    厚壳贻贝肠道Mesoflavibacter sp.1NR134082ECSMC14KU84539099
    厚壳贻贝肠道Pseudoalteromonas sp.30NR114190ECSMB30KX099925100
    厚壳贻贝肠道Tenacibaculum sp.3JN128275ECSMC3KU84538099
    厚壳贻贝肠道Ruegeria sp.2MF359423ECSMC5KU84538199
    厚壳贻贝肠道Ahrensia sp.1KJ700633ECSMC1KU84537899
    厚壳贻贝肠道Phaeobacter sp.1HE584770ECSMC6KU845382100
    下载: 导出CSV

    表  2  细菌密度与诱导活性的相关性分析

    Tab.  2  Correlation analyses between the bacterial density and inducing activity

    测试菌株细菌密度
    幼虫诱导活性稚贝诱导活性
    rprp
    Bacillus sp.40.912 90.000 1*−0.642 00.118 7
    Paracoccus sp.20.804 10.000 1*0.835 20.000 1*
    Flavobacterium sp.10.227 20.182 70.874 20.000 1*
    Arenibacter sp.1−0.010 80.950 00.747 40.002 7*
    Mesoflavibacter sp.10.247 00.146 50.426 10.196 3
    Pseudoalteromonas sp.30−0.672 70.000 1*0.638 70.002 2*
    Tenacibaculum sp.30.260 40.125 00.174 70.237 4
    Ruegeria sp.2−0.461 90.004 6*0.791 60.000 1*
    Ahrensia sp.10.344 10.039 9*0.277 40.208 5
    Phaeobacter sp.10.630 70.172 50.965 40.000 1*
      注: *表示差异显著(p<0.05)。
    下载: 导出CSV

    表  3  本实验中肠道细菌的遗传距离

    Tab.  3  Genetic distances of intestinal bacterial in tested

    测试菌株21281514303516
    2
    120.267
    80.2540.011
    150.3190.2860.308
    140.3170.3070.2940.097
    300.2650.1940.2210.3030.290
    30.3360.2850.3050.1180.0990.274
    50.2530.0630.0760.1180.3140.2300.311
    10.2550.1440.1170.3030.2950.2170.2920.139
    60.3030.1020.0840.3100.3150.2370.3170.0390.138
      注: 1, 2, ···, 30 分别表示菌株ECSMC1, ECSMC2, ···, ECSMC30。
    下载: 导出CSV

    表  4  膜厚与诱导活性的相关性分析

    Tab.  4  Correlation analyses between the biofilm thickness and inducing activity

    测试菌株生物被膜膜厚
    幼虫诱导活性稚贝诱导活性
    rprp
    Bacillus sp.40.376 40.108 70.264 20.075 6
    Phaeobacter sp.10.375 30.115 40.886 40.000 1*
      注: *表示差异显著(p<0.05)。
    下载: 导出CSV

    表  5  胞外产物与幼虫诱导活性的相关性分析

    Tab.  5  Correlation analyses between extracellular product and inducing activity of larvae

    测试菌株生物被膜胞外产物生物量
    脂类蛋白质α-多糖β-多糖
    rprprprp
    Bacillus sp.40.363 40.094 20.486 50.000 1*0.886 50.000 1*0.753 20.000 1*
    Phaeobacter sp.10.484 50.265 8−0.864 30.028 7*−0.642 40.147 5−0.448 60.084 5
      注: *表示差异显著(p < 0.05)。
    下载: 导出CSV

    表  6  胞外产物与稚贝诱导活性的相关性分析

    Tab.  6  Correlation analyses between the extracellular product and inducing activity of plantigrade

    测试菌株生物被膜胞外产物生物量
    脂类蛋白质α-多糖β-多糖
    rprprprp
    Bacillus sp.40.765 30.219 50.592 50.1209−0.764 30.037 1*−0.343 60.129 1
    Phaeobacter sp.10.464 20.107 50.556 30.07530.669 80.044 3*0.562 10.085 9
      注: *表示差异显著(p < 0.05)。
    下载: 导出CSV
  • [1] 常亚青. 贝类增养殖学[M]. 北京: 中国农业出版社, 2007.

    Chang Yaqing. Stock Enhancement and Culture in Mollusks[M]. Beijing: China Agriculture Press, 2007.
    [2] 杨金龙, 郭行磐, 陈芋如, 等. 中湿度表面的海洋细菌对厚壳贻贝稚贝附着的影响[J]. 水产学报, 2015, 39(3): 421−428.

    Yang Jinlong, Guo Xingpan, Chen Yuru, et al. Effects of bacterial biofilms formed on middle wettability surfaces on settlement of plantigrades of the mussel Mytilus coruscus[J]. Journal of Fisheries of China, 2015, 39(3): 421−428.
    [3] 李太武. 海洋生物学[M]. 北京: 海洋出版社, 2013.

    Li Taiwu. Marine Biology[M]. Beijing: China Ocean Press, 2013.
    [4] 孙俊杰, 张显, 郭行磐, 等. 硅烷化表面海洋细菌对厚壳贻贝稚贝附着的影响[J]. 水产学报, 2015, 39(10): 1530−1538.

    Sun Junjie, Zhang Xian, Guo Xingpan, et al. Effects of marinebacteria from silanizing surfaces on plantigrade settlement of the mussel Mytilus coruscus[J]. Journal of Fisheries of China, 2015, 39(10): 1530−1538.
    [5] 张义浩, 赵盛龙. 嵊山列岛贻贝养殖种类生长发育调查[J]. 浙江海洋学院学报(自然科学版), 2003, 22(1): 67−73.

    Zhang Yihao, Zhao Shenglong. Mussel species and growth developing investigation around Shengshan archipelago[J]. Journal of Zhejiang Ocean University (Natural Science), 2003, 22(1): 67−73.
    [6] Dobretsov S, Qian Peiyuan. Facilitation and inhibition of larval attachment of the bryozoan Bugula neritina in association with mono-species and multi-species biofilms[J]. Journal of Experimental Marine Biology and Ecology, 2006, 333(2): 263−274. doi: 10.1016/j.jembe.2006.01.019
    [7] 柯才焕, 周时强, 田越, 等. 盘鲍幼体附着诱导的研究[J]. 台湾海峡, 2001, 20(1): 9−14.

    Ke Caihuan, Zhou Shiqiang, Tian Yue, et al. Induction of settlement in Japanese abalone, Haliotis discus discus[J]. Journal of Oceanography in Taiwan Strait, 2001, 20(1): 9−14.
    [8] Jouuchi T, Satuito C G, Kitamura H. Sugar compound products of the periphytic diatom Navicula ramosissima induce larval settlement in the barnacle, Amphibalanus amphitrite[J]. Marine Biology, 2007, 152(5): 1065−1076. doi: 10.1007/s00227-007-0753-6
    [9] 梁箫, 童欢, 彭莉华, 等. 纤维素对海洋细菌生物被膜形成及厚壳贻贝幼虫附着变态的调控[J]. 大连海洋大学学报, 2020, 35(1): 75−82.

    Liang Xiao, Tong Huan, Peng Lihua, et al. Regulation of formation of biofilms and larval settlement and metamorphosis of mussel Mytilus coruscus by cellulose[J]. Journal of Dalian Ocean University, 2020, 35(1): 75−82.
    [10] 梁箫, 刘红雨, 杨丽婷, 等. 弧菌生物被膜的动态演替对厚壳贻贝附着的影响[J]. 水产学报, 2020, 44(1): 118−129.

    Liang Xiao, Liu Hongyu, Yang Liting, et al. Effects of dynamic succession of Vibrio biofilms on settlement of the musselMytilus coruscus[J]. Journal of Fisheries of China, 2020, 44(1): 118−129.
    [11] 黄道芬, 梁箫, 彭莉华, 等. 不同来源海洋弧菌微生物被膜对厚壳贻贝稚贝附着的影响[J]. 水产学报, 2017, 41(7): 1140−1147.

    Huang Daofen, Liang Xiao, Peng Lihua, et al. Effects of Vibrio biofilms of different sources on settlement of plantigrades of the mussel Mytilus coruscus[J]. Journal of Fisheries of China, 2017, 41(7): 1140−1147.
    [12] Peng Lihua, Liang Xiao, Xu Jiakang, et al. Monospecific biofilms of Pseudoalteromonas promote larval settlement and metamorphosis of Mytilus coruscus[J]. Scientific Reports, 2020, 10(1): 2577. doi: 10.1038/s41598-020-59506-1
    [13] 杨娜, 梁箫, 彭莉华, 等. 肠道细菌对厚壳贻贝稚贝附着的作用研究[J]. 海洋科学, 2017, 41(11): 45−54. doi: 10.11759/hykx20170626001

    Yang Na, Liang Xiao, Peng Lihua, et al. Effects of gut bacteria on the settlement of spats of Mytilus coruscus[J]. Marine Sciences, 2017, 41(11): 45−54. doi: 10.11759/hykx20170626001
    [14] 张偲, 张长生, 田新朋, 等. 中国海洋微生物多样性研究[J]. 中国科学院院刊, 2010, 25(6): 651−658.

    Zhang Si, Zhang Changsheng, Tian Xinpeng, et al. The study of diversities of marine microbes in China[J]. Bulletin of the Chinese Academy of Sciences, 2010, 25(6): 651−658.
    [15] 张庆芳, 杨超, 于爽, 等. 黄海海域海洋沉积物细菌多样性分析[J]. 微生物学通报, 2020, 47(2): 370−378.

    Zhang Qingfang, Yang Chao, Yu Shuang, et al. Bacterial diversity of marine sediments in the Yellow Sea[J]. Microbiology China, 2020, 47(2): 370−378.
    [16] Li Yifeng, Chen Yanwen, Xu Jiakang, et al. Temperature elevation and Vibrio cyclitrophicus infection reduce the diversity of haemolymph microbiome of the mussel Mytilus coruscus[J]. Scientific Reports, 2019, 9(1): 16391. doi: 10.1038/s41598-019-52752-y
    [17] Dong Pengsheng, Guo Haipeng, Wang Yanting, et al. Gastrointestinal microbiota imbalance is triggered by the enrichment of Vibrio in subadult Litopenaeus vannamei with acute hepatopancreatic necrosis disease[J]. Aquaculture, 2021, 533: 736199. doi: 10.1016/j.aquaculture.2020.736199
    [18] Riquelme C, Toranzo A E, Barja J L, et al. Association of Aeromonas hydrophila and Vibrio alginolyticus with larval mortalities of scallop (Argopecten purpuratus)[J]. Journal of Invertebrate Pathology, 1996, 67(3): 213−218. doi: 10.1006/jipa.1996.0035
    [19] Ardiç N, Ozyurt M. Case report: otitis due to Vibrio alginolyticus[J]. Mikrobiyoloji Bülteni, 2004, 38(1/2): 145−148.
    [20] 封会茹, 游京蓉, 刘玉堂, 等. 溶藻弧菌引起暴发型食物中毒的病原学研究[J]. 中国食品卫生杂志, 2003, 15(4): 331−334. doi: 10.3969/j.issn.1004-8456.2003.04.016

    Feng Huiru, You Jingrong, Liu Yutang, et al. Research of one abrupt food poisoning caused byVibrio alginolyticus[J]. Chinese Journal of Food Hygiene, 2003, 15(4): 331−334. doi: 10.3969/j.issn.1004-8456.2003.04.016
    [21] 白瑶, 叶淑瑶, 江涛, 等. 水产品中创伤弧菌检测方法建立与应用[J]. 中国食品卫生杂志, 2018, 30(6): 592−597.

    Bai Yao, Ye Shuyao, Jiang Tao, et al. Development and application of detection method for Vibrio vulnificus in aquatic products[J]. Chinese Journal of Food Hygiene, 2018, 30(6): 592−597.
    [22] 杨春晓, 方艳梅, 魏泉德, 等. 珠海市海产品中2种致病性弧菌污染状况[J]. 中国卫生检验杂志, 2018, 28(14): 1784−1785, 1792.

    Yang Chunxiao, Fang Yanmei, Wei Quande, et al. Contamination of two kinds of pathogenic Vibrio parahaemolyticus in seafood in Zhuhai[J]. Chinese Journal of Health Laboratory Technology, 2018, 28(14): 1784−1785, 1792.
    [23] Eckburg P B, Bik E M, Bernstein C N, et al. Diversity of the human intestinal microbial flora[J]. Science, 2005, 308(5728): 1635−1638. doi: 10.1126/science.1110591
    [24] He Qi, Wang Lin, Wang Fan, et al. Microbial fingerprinting detects intestinal microbiota dysbiosis in zebrafish models with chemically-induced enterocolitis[J]. BMC Microbiology, 2013, 13(1): 289. doi: 10.1186/1471-2180-13-289
    [25] Bates J M, Mittge E, Kuhlman J, et al. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation[J]. Developmental Biology, 2006, 297(2): 374−386. doi: 10.1016/j.ydbio.2006.05.006
    [26] Li Yifeng, Guo Xingpan, Yang Jinlong, et al. Effects of bacterial biofilms on settlement of plantigrades of the mussel Mytilus coruscus[J]. Aquaculture, 2014, 433(6): 434−441.
    [27] Yang Jinlong, Shen Peijing, Liang Xiao, et al. Larval settlement and metamorphosis of the mussel Mytilus coruscus in response to monospecific bacterial biofilms[J]. Biofouling, 2013, 29(3): 247−259. doi: 10.1080/08927014.2013.764412
    [28] 周轩, 郭行磐, 陈芋如, 等. 低湿度表面的海洋附着细菌对厚壳贻贝附着的影响[J]. 大连海洋大学学报, 2015, 30(1): 30−35. doi: 10.3969/J.ISSN.2095-1388.2015.01.006

    Zhou Xuan, Guo Xingpan, Chen Yuru, et al. Effects of bacterial biofilms formed on low surface wettability on settlement of plantigrades of the mussel Mytilus coruscus[J]. Journal of Dalian Ocean University, 2015, 30(1): 30−35. doi: 10.3969/J.ISSN.2095-1388.2015.01.006
    [29] Han Shaofeng, Liu Yuchun, Zhou Zhigang, et al. Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idellus) based on 16S rDNA gene sequences[J]. Aquaculture Research, 2010, 42(1): 47−56. doi: 10.1111/j.1365-2109.2010.02543.x
    [30] Cahill M M. Bacterial flora of fishes: a review[J]. Microbial Ecology, 1990, 19(1): 21−41. doi: 10.1007/BF02015051
    [31] Bao Weiyang, Yang Jinlong, Satuito C G, et al. Larval metamorphosis of the mussel Mytilus galloprovincialis in response toAlteromonas sp.1: evidence for two chemical cues?[J]. Marine Biology, 2007, 152(3): 657−666. doi: 10.1007/s00227-007-0720-2
    [32] Tran C, Hadfield M G. Larvae of Pocillopora damicornis (Anthozoa) settle and metamorphose in response to surface-biofilm bacteria[J]. Marine Ecology Progress Series, 2011, 433: 85−96. doi: 10.3354/meps09192
    [33] Liang Xiao, Zhang Xiukun, Peng Lihua, et al. The flagellar gene regulates biofilm formation and mussel larval settlement and metamorphosis[J]. International Journal of Molecular Sciences, 2020, 21(3): 710. doi: 10.3390/ijms21030710
    [34] Peng Lihua, Liang Xiao, Chang Ruiheng, et al. A bacterial polysaccharide biosynthesis-related gene inversely regulates larval settlement and metamorphosis of Mytilus coruscus[J]. Biofouling, 2020, 36(7): 753−765. doi: 10.1080/08927014.2020.1807520
    [35] 高伟, 郭行磐, 徐嘉康, 等. 微生物被膜形成因子及其对厚壳贻贝附着的影响[J]. 大连海洋大学学报, 2017, 32(4): 405−409.

    Gao Wei, Guo Xingpan, Xu Jiakang, et al. Effects of environmental factors on formation of bacterial biofilms and settlement of plantigrades of mussel Mytilus coruscus[J]. Journal of Dalian Ocean University, 2017, 32(4): 405−409.
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  208
  • HTML全文浏览量:  49
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 修回日期:  2021-03-31
  • 网络出版日期:  2021-05-19
  • 刊出日期:  2021-09-25

目录

    /

    返回文章
    返回