留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SAR图像速度聚束调制的海浪反演研究

许荞晖 张彦敏 王运华

许荞晖,张彦敏,王运华. 基于SAR图像速度聚束调制的海浪反演研究[J]. 海洋学报,2021,43(12):111–121 doi: 10.12284/hyxb2021103
引用本文: 许荞晖,张彦敏,王运华. 基于SAR图像速度聚束调制的海浪反演研究[J]. 海洋学报,2021,43(12):111–121 doi: 10.12284/hyxb2021103
Xu Qiaohui,Zhang Yanmin,Wang Yunhua. Ocean wave inversion based on the velocity bunching modulation of SAR image[J]. Haiyang Xuebao,2021, 43(12):111–121 doi: 10.12284/hyxb2021103
Citation: Xu Qiaohui,Zhang Yanmin,Wang Yunhua. Ocean wave inversion based on the velocity bunching modulation of SAR image[J]. Haiyang Xuebao,2021, 43(12):111–121 doi: 10.12284/hyxb2021103

基于SAR图像速度聚束调制的海浪反演研究

doi: 10.12284/hyxb2021103
基金项目: 国家重点研发计划(2017YFB0502700);国家自然科学基金(41576170,41976167);山东省−国家自然科学基金联合基金(U1606405)
详细信息
    作者简介:

    许荞晖(1996—),女,山东省济南市人,主要从事微波海洋遥感研究。 E-mail:xuqiaohui0216@qq.com

    通讯作者:

    张彦敏,女,副教授,主要从事海面电磁散射特性和海洋SAR遥感探测与信息提取研究。E-mail:yanminzhang@ouc.edu.cn

  • 中图分类号: P715.6;P731.22

Ocean wave inversion based on the velocity bunching modulation of SAR image

  • 摘要: 本文首先对合成孔径雷达(SAR)海浪成像中的3种调制(倾斜调制、流体力学调制与速度聚束调制)的影响进行了对比分析,结果显示:速度聚束调制对SAR图像的影响最为显著。另外,由于SAR图像中固有相干斑噪声的存在,较低波数范围的噪声难以滤除或抑制,利用经典MPI方法反演海浪谱会造成低波数范围谱值偏大。基于此,本文借鉴经典MPI海浪谱反演算法,建立了基于速度聚束调制的海浪方位向斜率谱和有效波高的反演算法。通过将经典MPI方法、同极化调制法及本文算法等3种海浪反演方法所得有效波高与浮标数据进行比较,结果显示:本文方法反演得到的海浪有效波高与浮标数据获得的有效波高之间的均方误差为0.79 m,为3种方法中最小。
  • 图  1  仿真海面SAR图像(a),仅考虑速度聚束调制的海面SAR图像(b)和仅考虑倾斜调制和流体力学调制的海面SAR图像(c)

    Fig.  1  Simulated SAR image of sea surface (a), simulated SAR image of sea surface with the velocity bunching modulation (b) and simulated SAR image of sea surface with the tilt modulation and the hydrodynamic modulation (c)

    图  2  仿真海面SAR图像谱(a),仅考虑速度聚束调制的仿真海面SAR图像谱(b)和仅考虑倾斜调制和流体力学调制的仿真海面SAR图像谱(c)

    Fig.  2  The spectrum of the simulated SAR image of sea surface (a), the spectrum of the simulated SAR image of sea surface with the velocity bunching modulation (b) and the spectrum of the simulated SAR image of sea surface with the tilt modulation and the hydrodynamic modulation (c)

    图  3  Radarsat-2数据2的SAR图像

    Fig.  3  SAR image of Radarsat-2 data 2

    图  4  Radarsat-2数据2中选取的512×512像素SAR图像(a),仅考虑速度聚束调制的SAR图像(b)和仅考虑倾斜调制和流体力学调制的SAR图像(c)

    Fig.  4  SAR image of 512×512 size selected in Radarsat-2 data 2 (a), SAR image that only the velocity bunching modulation is considered (b) and SAR image that only the tilt modulation and the hydrodynamic modulation are considered (c)

    图  5  SAR图像谱(a),仅考虑速度聚束调制的SAR图像谱(b)和仅考虑倾斜调制和流体力学调制的SAR图像谱(c)

    Fig.  5  The spectrum of the SAR image (a), the spectrum of the SAR image that only the velocity bunching modulation is considered (b) and the spectrum of the SAR image that only the tilt modulation and the hydrodynamic modulation are considered (c)

    图  6  仿真SAR图像谱积分能量随涌浪传播方向角的变化(a),在不同传播方向角下,考虑不同调制的谱积分能量占总能量的比重(b)

    Fig.  6  The spectral integration value variation of the simulated SAR images with different wave propagation direction angle (a), the proportion of the spectral integration variation under the different modulation conditions with different wave propagation direction angles (b)

    图  7  未添加(a)和添加(b)乘性噪声的二维海面回波信号

    Fig.  7  Two-dimensional echo signal of ocean wave without (a) and with multiplicative noise (b)

    图  8  沿方位向的平均图像谱密度

    Fig.  8  Mean density of image spectrum along azimuth direction

    图  9  Radarsat-2数据2(a)和数据3(b)中 SAR子图像反演所得方位向斜率谱

    Fig.  9  The azimuth slope spectrum retrieved from the sub-image of SAR in Radarsat-2 data 2 (a) and data 3 (b)

    图  10  Radarsat-2数据2(a)和数据3(b)整幅SAR图像反演所得方位向斜率谱

    Fig.  10  The azimuth slope spectrum retrieved from the SAR in Radarsat-2 data 2 (a) and data 3 (b)

    图  11  不同方法反演有效波高与浮标观测结果对比散点图

    Fig.  11  The scatter plots of retrieved significant wave height by different methods with buoy data

    图  12  不同方法反演有效波高与ECMWF再分析数据对比散点图

    Fig.  12  The scatter plots of retrieved significant wave height by different methods with ECMWF reanalysis data

    表  1  Radarsat-2全极化SAR数据信息

    Tab.  1  Radarsat-2 full polarized SAR data information

    数据序号数据名成像时间中心坐标
    1RS2_OK105124_PK912453_DK845008_FQ4
    _20090111_022504_HH_VV_HV_VH_SLC
    2009年1月11日
    02:25:04
    46°04′06″N,
    131°02′22″W
    2RS2_OK105124_PK912454_DK845009_FQ18
    _20090118_143058_HH_VV_HV_VH_SLC
    2009年1月18日
    14:30:58
    45°57′43″N,
    125°39′18″W
    3RS2_OK105124_PK912455_DK845010_FQ20
    _20090225_020926_HH_VV_HV_VH_SLC
    2009年2月25日
    02:09:26
    35°44′43″N,
    121°55′42″W
    4RS2_OK105124_PK912456_DK845011_FQ12
    _20090228_054758_HH_VV_HV_VH_SLC
    2009年2月28日
    05:47:58
    51°07′18″N,
    178°53′10″W
    5RS2_OK105124_PK912457_DK845012_FQ4
    _20090317_143915_HH_VV_HV_VH_SLC
    2009年3月17日
    14:39:15
    46°07′05″N,
    124°33′25″W
    6RS2_OK105124_PK912458_DK845013_FQ13
    _20090822_143105_HH_VV_HV_VH_SLC
    2009年8月22日
    14:31:05
    46°08′05″N,
    124°30′15″W
    7RS2_OK29804_PK294773_DK265292_FQ10
    _20100515_115636_HH_VV_HV_VH_SLC
    2010年5月15日
    11:56:36
    28°33'05"N,
    88°18'34″W
    8RS2_OK92533_PK818353_DK746868_FQ1
    _20091107_152316_HH_VV_HV_VH_SLC
    2009年11月7日
    15:23:16
    54°21'23"N,
    132°23'09"W
    9RS2_OK92533_PK818354_DK746869_FQ12
    _20091208_151913_HH_VV_HV_VH_SLC
    2009年12月8日
    15:19:13
    54°11'19″N,
    134°22'30″W
    10RS2_OK100982_PK877033_DK810385_FQ17
    _20170319_042844_HH_VV_HV_VH_SLC
    2017年3月19日
    04:28:44
    54°01'02″N,
    160°47'01″W
    下载: 导出CSV

    表  2  Radarsat-2数据不同反演方法的有效波高结果

    Tab.  2  The retrieved significant wave height of different inversion methods for Radarsat-2 data

    数据序号本文算法/mMPI法/m同极化调制函数法/m浮标实测/mECMWF再分析数据/m
    11.761.712.063.103.22
    23.391.732.082.512.72
    32.181.561.732.882.15
    43.131.881.134.053.27
    52.601.802.823.443.45
    62.651.811.932.472.08
    71.110.463.081.491.42
    86.322.616.725.204.21
    92.112.583.872.602.54
    102.421.014.102.311.94
    下载: 导出CSV
  • [1] Alpers W R, Ross D B, Rufenach C L. On the detectability of ocean surface waves by real and synthetic aperture radar[J]. Journal of Geophysical Research: Oceans, 1981, 86(C7): 6481−6498. doi: 10.1029/JC086iC07p06481
    [2] Hasselmann K, Raney R K, Plant W J, et al. Theory of synthetic aperture radar ocean imaging: A MARSEN view[J]. Journal of Geophysical Research: Oceans, 1985, 90(C3): 4659−4686. doi: 10.1029/JC090iC03p04659
    [3] Lyzenga D R, Shuchman R A, Lyden J D, et al. SAR imaging of waves in water and ice: Evidence for velocity bunching[J]. Journal of Geophysical Research: Oceans, 1985, 90(C1): 1031−1036. doi: 10.1029/JC090iC01p01031
    [4] Alpers W, Rufenach C. The effect of orbital motions on synthetic aperture radar imagery of ocean waves[J]. IEEE Transactions on Antennas and Propagation, 1979, 27(5): 685−690. doi: 10.1109/TAP.1979.1142163
    [5] Engen G, Johnsen H, Krogstad H E, et al. Directional wave spectra by inversion of ERS-1 synthetic aperture radar ocean imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(2): 340−352. doi: 10.1109/36.295049
    [6] Jacobsen S, Høgda K A. Estimation of the real aperture radar modulation transfer function directly from synthetic aperture radar ocean wave image spectra without a priori knowledge of the ocean wave height spectrum[J]. Journal of Geophysical Research: Oceans, 1994, 99(C7): 14291−14302. doi: 10.1029/94JC00633
    [7] Brüning C. The impact of the ocean wave-radar modulation transfer function on the inversion of ERS-1 SAR image spectra into ocean wave spectra[C]//Proceedings of IGARSS ’94−1994 IEEE International Geoscience and Remote Sensing Symposium. Pasadena, CA, USA: IEEE, 1994: 2032−2034.
    [8] Alpers W, Schmidt A, Schmidt R, et al. A comparison of ocean wave-radar modulation transfer functions at different radar frequencies and polarizations determined from tower and aircraft measurements[C]//1995 International Geoscience and Remote Sensing Symposium, IGARSS '95. Quantitative Remote Sensing for Science and Applications. Firenze, Italy: IEEE, 1995: 1087−1089.
    [9] Hasselmann K, Hasselmann S. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion[J]. Journal of Geophysical Research: Oceans, 1991, 96(C6): 10713−10729. doi: 10.1029/91JC00302
    [10] Brüning C, Schmidt R, Alpers W. Estimation of the ocean wave-radar modulation transfer function from synthetic aperture radar imagery[J]. Journal of Geophysical Research: Oceans, 1994, 99(C5): 9803−9815. doi: 10.1029/93JC03373
    [11] Hasselmann S, Brüning C, Hasselmann K, et al. An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra[J]. Journal of Geophysical Research: Oceans, 1996, 101(C7): 16615−16629. doi: 10.1029/96JC00798
    [12] Mastenbroek C, De Valk C F. A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar[J]. Journal of Geophysical Research: Oceans, 2000, 105(C2): 3497−3516. doi: 10.1029/1999JC900282
    [13] Schulz-Stellenfleth J, Lehner S, Hoja D. A parametric scheme for the retrieval of two-dimensional ocean wave spectra from synthetic aperture radar look cross spectra[J]. Journal of Geophysical Research: Oceans, 2005, 110(C5): C05004.
    [14] Zhang Biao, Perrie W, He Yijun. Validation of RADARSAT-2 fully polarimetric SAR measurements of ocean surface waves[J]. Journal of Geophysical Research: Oceans, 2010, 115(C6): C06031.
    [15] He Yijun, Perrie W, Xie Tao, et al. Ocean wave spectra from a linear polarimetric SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11): 2623−2631. doi: 10.1109/TGRS.2004.836813
    [16] He Yijun, Shen Hui, Perrie W. Remote sensing of ocean waves by polarimetric SAR[J]. Journal of Atmospheric and Oceanic Technology, 2006, 23(12): 1768−1773. doi: 10.1175/JTECH1948.1
    [17] Schulz-Stellenfleth J, König T, Lehner S. An empirical approach for the retrieval of integral ocean wave parameters from synthetic aperture radar data[J]. Journal of Geophysical Research: Oceans, 2007, 112(C3): C03019.
    [18] Li Xiaoming, Lehner S, Bruns T. Ocean wave integral parameter measurements using Envisat ASAR wave mode data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 155−174. doi: 10.1109/TGRS.2010.2052364
    [19] Stopa J E, Mouche A. Significant wave heights from Sentinel-1 SAR: Validation and applications[J]. Journal of Geophysical Research: Oceans, 2017, 122(3): 1827-1848.
    [20] Pleskachevsky A L, Rosenthal W, Lehner S. Meteo-marine parameters for highly variable environment in coastal regions from satellite radar images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119: 464−484. doi: 10.1016/j.isprsjprs.2016.02.001
    [21] Romeiser R, Graber H C, Caruso M J, et al. A new approach to ocean wave parameter estimates from C-band scanSAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1320−1345. doi: 10.1109/TGRS.2014.2337663
    [22] Shao Weizeng, Zhang Zheng, Li Xiaofeng, et al. Ocean wave parameters retrieval from Sentinel-1 SAR imagery[J]. Remote Sensing, 2016, 8(9): 707. doi: 10.3390/rs8090707
    [23] Grieco G, Lin Wenming, Migliaccio M, et al. Dependency of the Sentinel-1 azimuth wavelength cut-off on significant wave height and wind speed[J]. International Journal of Remote Sensing, 2016, 37(21): 5086−5104. doi: 10.1080/01431161.2016.1226525
    [24] Shao Weizeng, Jiang Xingwei, Nunziata F, et al. Analysis of waves observed by synthetic aperture radar across ocean fronts[J]. Ocean Dynamics, 2020, 70(11): 1397−1407. doi: 10.1007/s10236-020-01403-2
    [25] Shao Weizeng, Hu Y Y, Zheng G, et al. Sea state parameters retrieval from cross-polarization Gaofen-3 SAR data[J]. Advances in Space Research, 2020, 65(3): 1025−1034. doi: 10.1016/j.asr.2019.10.034
    [26] Wright J. A new model for sea clutter[J]. IEEE Transactions on Antennas and Propagation, 1968, 16(2): 217−223. doi: 10.1109/TAP.1968.1139147
    [27] Lyzenga D R. Numerical simulation of synthetic aperture radar image spectra for ocean waves[J]. IEEE Transactions on Geoscience and Remote Sensing, 1986, GE-24(6): 863−872. doi: 10.1109/TGRS.1986.289701
    [28] Keller W C, Wright J W. Microwave scattering and the straining of wind-generated waves[J]. Radio Science, 1975, 10(2): 139−147. doi: 10.1029/RS010i002p00139
    [29] Arsenault H H, April G. Properties of speckle integrated with a finite aperture and logarithmically transformed[J]. Journal of the Optical Society of America, 1976, 66(11): 1160−1163. doi: 10.1364/JOSA.66.001160
    [30] Lee J S. Speckle analysis and smoothing of synthetic aperture radar images[J]. Computer Graphics and Image Processing, 1981, 17(1): 24−32. doi: 10.1016/S0146-664X(81)80005-6
    [31] Lee J S. Speckle suppression and analysis for synthetic aperture radar images[J]. Optical Engineering, 1986, 25(5): 636−646. doi: 10.1117/12.7973877
    [32] Lee J S, Jurkevich L, Dewaele P, et al. Speckle filtering of synthetic aperture radar images: A review[J]. Remote Sensing Reviews, 1994, 8(4): 313−340. doi: 10.1080/02757259409532206
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  405
  • HTML全文浏览量:  164
  • PDF下载量:  78
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-29
  • 修回日期:  2021-05-24
  • 网络出版日期:  2021-12-09
  • 刊出日期:  2021-12-30

目录

    /

    返回文章
    返回