留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新一代静止气象卫星葵花8号的晴空红外辐射率资料同化对台风“天鸽”的预报影响研究

许冬梅 沈菲菲 李泓 刘瑞霞 王易 束艾青

许冬梅,沈菲菲,李泓,等. 新一代静止气象卫星葵花8号的晴空红外辐射率资料同化对台风“天鸽”的预报影响研究[J]. 海洋学报,2021,43(7):1–13 doi: 10.12284/hyxb2021091
引用本文: 许冬梅,沈菲菲,李泓,等. 新一代静止气象卫星葵花8号的晴空红外辐射率资料同化对台风“天鸽”的预报影响研究[J]. 海洋学报,2021,43(7):1–13 doi: 10.12284/hyxb2021091
Xu Dongmei,Shen Feifei,Li Hong, et al. The impact of assimilation of Himawari-8 clear-sky data frm the new generation geostationary weather satellite on the forecast of super typhoon Hato[J]. Haiyang Xuebao,2021, 43(7):1–13 doi: 10.12284/hyxb2021091
Citation: Xu Dongmei,Shen Feifei,Li Hong, et al. The impact of assimilation of Himawari-8 clear-sky data frm the new generation geostationary weather satellite on the forecast of super typhoon Hato[J]. Haiyang Xuebao,2021, 43(7):1–13 doi: 10.12284/hyxb2021091

新一代静止气象卫星葵花8号的晴空红外辐射率资料同化对台风“天鸽”的预报影响研究

doi: 10.12284/hyxb2021091
基金项目: 国家重点研发计划(2018YFC1506404);国家自然科学基金(G41805070,G41805016,G41575107);高原与盆地暴雨旱涝灾害四川省重点实验室开放研究基金(SZKT201901,SZKT201904);中国气象局沈阳大气环境研究所和东北冷涡研究重点开放实验室联合开放基金(2020SYIAE02,2020SYIAE07);江苏省气象局科研重点项目(KZ202001);江苏省333工程(BRA2020427)
详细信息
    作者简介:

    许冬梅(1984-),女,讲师,博士,主要从事卫星资料同化和云参数反演研究工作。E-mail:dmxu@nuist.edu.cn

    通讯作者:

    沈菲菲(1984-),男,副教授,主要从事中小尺度数值模拟与资料同化。E-mail:ffshen@nuist.edu.cn

  • 中图分类号: P412.25; P444

The impact of assimilation of Himawari-8 clear-sky data frm the new generation geostationary weather satellite on the forecast of super typhoon Hato

  • 摘要: 本文以2017年第13号台风“天鸽”(“Hato”)为例,在WRFDA同化系统中结合日本葵花8号(Himawari-8)资料,通过同化Himawari-8晴空红外辐射率资料并进一步考察其对台风“天鸽”的结构、强度、路径分析和预报的影响。研究结果表明:同化Himawari-8晴空红外辐射率资料对台风背景场的水汽相关变量分析有显著改进,对背景场中的台风水汽信息有一定的改进作用。与控制实验,即没有同化Himawari-8晴空红外辐射率资料的实验相比,加入同化实验对台风“天鸽”的风场、500 hPa气压场的分析效果有所提高,台风气旋性环流加强,并进一步改进了对台风“天鸽”的路径、台风中心最低气压和近中心最大风速的预报。平均路径误差、降水预报,相对于常规观测变量的均方根误差均有所改善。
  • 图  1  通道8、9、10的权重函数

    Fig.  1  The weight function of band 8、9、10

    图  2  台风“天鸽”的观测路径(a)以及8月22日18时Himawari-8卫星13通道的亮度温度(b)

    Fig.  2  The observation path of typhoon “Hato” (a) and the brightness temperature of band 13 on the Himawari-8 satellite at 18:00 UTC on August 22th (b)

    图  3  WRF模拟区域

    Fig.  3  The simulation area of WRF

    图  4  实验流程设置

    Fig.  4  The experimental flowchart

    图  5  OMB和预报因子1 000~300 hPa层结厚度(a),200~50 hPa层结厚度(b),地表温度(c),水汽总含量(d)的分布散点图,图中的阴影显示是分布密度以及偏差bias和预报因子P的相关函数

    Fig.  5  OMB and predictor. The scatter plots of the thickness of the layer from 1 000~300 hPa (a), the thickness of the layer from 200~ 50 hPa (b), surface temperature (c), total moisture content (d), the shadow in figure shows distribution density and bias and correlation function of predictor

    图  6  2017年8月22日12时AHI资料通道8(a)、通道9(b)、通道10(c)观测与偏差订正前背景场模拟的辐射率值差异分布直方图(黑色),观测与偏差订正后背景场模拟的辐射率值差异分布直方图(蓝色)以及观测与分析场模拟的辐射率值差异分布直方图(灰色)

    Fig.  6  Histogram of AHI observation minus simulated radiance from the background without bias correction (black), observation minus simulated radiance from the background with bias correction (blue), and observation minus simulated radiance from the analysis (gray) for channel 8 (a), channel 9 (b) and channel 10 (c) at 12:00 UTC August 22th, 2017

    图  10  对于常规资料分析的RMSE均值,包括纬向风速(a),经向风速(b),温度(c)和湿度场(d)

    Fig.  10  RMSE mean values for conventional data analysis include u (a), v (b), T (c), and q (d)

    图  7  2017年8月22日12时到8月23日00时每小时一次(共13次)的亮度温度偏差订正时间序列通道8(a),通道9(b),通道10(c),从上到下依次为观测数目,亮温偏差平均值和亮温偏差标准差

    Fig.  7  Time series of bias correction every hour one time (13 times totally) at 12:00 UTC August 22th, 2017. band 8 (a), band 9 (b), band 10 (c), from top to bottom are number of observations, mean bias of bright temperature and sdv bias of bright temperature

    图  8  2017年8月22日12时00分500 hPa高度场对比

    a. CTNL实验,b. AHI_DA实验

    Fig.  8  500 hPa height field comparison at 12:00 UTC August 22th, 2017

    a. CTNL test, b. AHI_DA test

    图  9  2017年8月22日12时00分海平面气压场风场对比

    a. CTNL实验, b. AHI_DA实验

    Fig.  9  Sea level pressure field wind field comparison at 12:00 UTC August 22th, 2017

    a. CTNL test, b. AHI_DA test

    图  13  2017年8月23日00时后24 h确定性预报的实际路径,预报路径(a),路径误差随预报时间变化分布(b)

    Fig.  13  24-hour deterministic forecast on 00:00 UTC August 23th, 2017, actual path, forecast path (a), the distribution diagram of path error changes with forecast time (b)

    图  11  2017年8月22日18时到8月23日00时6 h累积降水,观测值(a),CTNL实验预报(b)和AHI_DA实验预报(c)

    Fig.  11  Cumulative precipitation between 18:00 UTC August 22th, 2017 and 00:00 UTC August 23th, 2017, observed value (a), CTNL test forecast (b), and AHI_DA test forecast (c)

    图  12  6 h累计降水量的FSS评分,阈值1 mm,5 mm,15 mm,25 mm

    Fig.  12  FSS score of cumulative precipitation in 6 h with thresholds of 1 mm, 5 mm, 15 mm, 25 mm

    表  1  AHI16个通道的中心波长

    Tab.  1  The central wavelength of 16 AHI bands

    频带名称波段类别中心波长/μm
    1可见光0.47
    2可见光0.51
    3可见光0.64
    4近红外线0.86
    5近红外线1.6
    6近红外线2.3
    7红外线3.9
    8红外线6.2
    9红外线6.9
    10红外线7.3
    11红外线8.6
    12红外线9.6
    13红外线10.4
    14红外线11.2
    15红外线12.3
    16红外线13.3
    下载: 导出CSV

    表  2  模拟实验方案设置

    Tab.  2  Simulation experiment scheme setting

    实验说明
    CTNL常规观测资料
    AHI_DA常规观测资料和AHI观测资料
    下载: 导出CSV
  • [1] 沈菲菲, 许冬梅, 闵锦忠, 等. 云尺度雷达资料的混合同化对台风“桑美”的数值模拟研究[J]. 海洋学报, 2018, 40(5): 48−61.

    Shen Feifei, Xu Dongmei, Min Jinzhong, et al. Assimilation of radar observations with En3DVAR at cloud-resolving scale for the prediction of Typhoon Saomai[J]. Haiyang Xuebao, 2018, 40(5): 48−61.
    [2] 沈菲菲, 闵锦忠, 许冬梅, 等. 双多普勒雷达资料同化在飓风“艾克”预报中的应用研究[J]. 海洋学报, 2016, 38(11): 60−72.

    Shen Feifei, Min Jinzhong, Xu Dongmei, et al. Application of assimilating dual doppler radar data in forecast of Hurricane Ike[J]. Haiyang Xuebao, 2016, 38(11): 60−72.
    [3] 沈菲菲, 闵锦忠, 陈鹏, 等. 多普勒雷达资料同化在台风“桑美”预报中的应用研究[J]. 海洋学报, 2015, 37(3): 25−36.

    Shen Feifei, Min Jinzhong, Chen Peng, et al. Experiments of assimilating doppler radar data in forecast of typhoon Saomai[J]. Haiyang Xuebao, 2015, 37(3): 25−36.
    [4] 李秋阳, 沈菲菲, 许冬梅, 等. 不同初始场资料对台风“桑美”数值模拟的影响[J]. 气象科技, 2019, 47(3): 460−468.

    Li Qiuyang, Shen Feifei, Xu Dongmei, et al. Influence of different initial fields on numerical simulation of typhoon Saomai[J]. Meteorological Science and Technology, 2019, 47(3): 460−468.
    [5] Miyoshi T, Kunii M. Using AIRS retrievals in the WRF-LETKF system to improve regional numerical weather prediction[J]. Tellus A: Dynamic Meteorology and Oceanography, 2012, 64(1): 18408. doi: 10.3402/tellusa.v64i0.18408
    [6] Zou X, Qin Zhengkun, Zheng Y. Improved tropical storm forecasts with GOES-13/15 imager radiance assimilation and asymmetric vortex initialization in HWRF[J]. Monthly Weather Review, 2015, 143(7): 2485−2505. doi: 10.1175/MWR-D-14-00223.1
    [7] 俞兆文, 刘健文, 黄江平, 等. AMSR2微波成像资料同化试验及其对台风预报的影响[J]. 气象海洋水文仪器, 2017, 34(2): 1−8.

    Yu Zhaowen, Liu Jianwen, Huang Jiangping, et al. Assimilation experiment of AMSR2 microwave imaging data and its influence on typhoon forecasting[J]. Meteorological, Hydrological and Marine Instruments, 2017, 34(2): 1−8.
    [8] 耿晓雯, 闵锦忠, 杨春, 等. FY-4A AGRI辐射率资料偏差特征分析及订正试验[J]. 大气科学, 2020, 44(4): 679−694.

    Geng Xiaowen, Min Jinzhong, Yang Chun, et al. Analysis of FY-4A AGRI radiance data bias characteristics and a correction experiment[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 2020, 44(4): 679−694.
    [9] Wang Y, Liu Z, Yang S, et al. Added value of assimilating Himawari-8 AHI water vapor radiances on analyses and forecasts for “7.19” severe storm over north China[J]. Journal of Geophysical Research, 2018, 123: 3374−3394.
    [10] Honda T, Miyoshi T, Lien G Y, et al. Assimilating all-sky Himawari-8 satellite infrared radiances: A case of typhoon soudelor (2015)[J]. Monthly Weather Review, 2018, 146(1): 213−229. doi: 10.1175/MWR-D-16-0357.1
    [11] 朱文刚. 高光谱大气红外探测器AIRS资料云检测及晴空通道应用技术初步研究[D]. 南京: 南京信息工程大学, 2012.

    Zhu Wengang. Impliment Study on hyperspectral atmospheric infrared detectors AIRS cloud detect and clear channels application technology[D]. Nanjing: Nanjing University of Information Science & Technology, 2012.
    [12] Goldberg M D, Qu Y, Mcmillin L M, et al. AIRS near-real-time products and algorithms in support of operational numerical weather prediction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(2): 379−389. doi: 10.1109/TGRS.2002.808307
    [13] 官莉. 卫星红外超光谱资料及其在云检测、晴空订正和大气廓线反演方面的应用[D]. 南京: 南京信息工程大学, 2005.

    Guan Li. A study on infrared hyperspectral measurements and its applications on cloud detection, cloud-clearing and atmospheric sounding profile[D]. Nanjing: Nanjing University of Information Science & Technology, 2005.
    [14] 官莉, 王振会. 用空间匹配的MODIS云产品客观确定AIRS云检测[J]. 气象科学, 2007, 27(5): 516−521. doi: 10.3969/j.issn.1009-0827.2007.05.007

    Guan Li, Wang Zhenhui. Objective determination of AIRS cloud mask using co-located MODIS cloud mask[J]. Scientia Meteorologica Sinica, 2007, 27(5): 516−521. doi: 10.3969/j.issn.1009-0827.2007.05.007
    [15] Bauer P, Ohring G, Kummerow C, et al. Assimilating satellite observations of clouds and precipitation into NWP models[J]. Bulletin of the American Meteorological Society, 2011, 92(6): ES25−ES28. doi: 10.1175/2011BAMS3182.1
    [16] Otkin J A. Assimilation of water vapor sensitive infrared brightness temperature observations during a high impact weather event[J]. Journal of Geophysical Research: Atmospheres, 2012, 140(D19): D19203.
    [17] Bessho K, Date K, Hayashi M, et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellite[J]. Journal of the Meteorological Society of Japan, 2016, 94(2): 151−183. doi: 10.2151/jmsj.2016-009
    [18] Honda T, Kotsuki S, Lien G Y, et al. Assimilation of himawari-8 all-sky radiances every 10 minutes: Impact on precipitation and flood risk prediction[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(2): 965−976. doi: 10.1002/2017JD027096
    [19] Qin Z, Zou X, Weng F. Impacts of assimilating all or GOES-like AHI infrared channels radiances on QPFs over eastern China[J]. Tellus A: Dynamic Meteorology and Oceanography, 2017, 69(1): 1345265. doi: 10.1080/16000870.2017.1345265
    [20] Barker D, Huang Xiangyu, Liu Zhiquan, et al. The weather research and forecasting model’s community variational/ensemble data assimilation system: WRFDA[J]. Bulletin of the American Meteorological Society, 2012, 93(6): 831−843. doi: 10.1175/BAMS-D-11-00167.1
    [21] Ide K, Courtier P, Ghil M, et al. Unified notation for data assimilation: Operational, sequential and variational[J]. Journal of the Meteorological Society of Japan. Ser. II, 1997, 75(1): 181−189.
    [22] Zhuge X, Zou X. Test of a modified infrared-only ABI cloud mask algorithm for AHI radiance observations[J]. Journal of Applied Meteorology and Climatology, 2016, 55(11): 2529−2546. doi: 10.1175/JAMC-D-16-0254.1
    [23] 张涛, 姜立鹏, 师春香, 等. AMSU-A全空辐射率资料同化对台风“天鸽”的预报影响研究[J]. 大气科学学报, 2019, 42(5): 705−714.

    Zhang Tao, Jiang Lipeng, Shi Chunxiang, et al. The impact of AMSU-A all-sky data assimilation on the forecast of super typhoon HATO[J]. Transactions of Atmospheric Sciences, 2019, 42(5): 705−714.
    [24] Roberts N M, Lean H W. Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events[J]. Monthly Weather Review, 2008, 136(1): 78−97. doi: 10.1175/2007MWR2123.1
    [25] 王天驹, 齐琳琳, 朱江, 等. HY-2卫星高度计波高资料在集合最优插值同化中的应用研究——以台风“Lipee”为例[J]. 海洋学报, 2017, 39(2): 29−38.

    Wang Tianju, Qi Linlin, Zhu Jiang, et al. Application studies of using HY-2 satellite altimeter wave data in ensemble optimal interpolation method——“Lipee” for instance[J]. Haiyang Xuebao, 2017, 39(2): 29−38.
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  56
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-05-06

目录

    /

    返回文章
    返回