留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近10年黄、渤海海域入海气旋的统计特征和加强原因分析

朱男男 熊秋芬 胡田田 马建铭 王亚男

朱男男,熊秋芬,胡田田,等. 近10年黄、渤海海域入海气旋的统计特征和加强原因分析[J]. 海洋学报,2021,43(9):1–11 doi: 10.12284/hyxb2021089
引用本文: 朱男男,熊秋芬,胡田田,等. 近10年黄、渤海海域入海气旋的统计特征和加强原因分析[J]. 海洋学报,2021,43(9):1–11 doi: 10.12284/hyxb2021089
Zhu Nannan,Xiong Qiufen,Hu Tiantian, et al. Statistic Characteristics and Strengthening Analysis of Cyclones over Yellow and Bohai Sea in recent 10 years[J]. Haiyang Xuebao,2021, 43(9):1–11 doi: 10.12284/hyxb2021089
Citation: Zhu Nannan,Xiong Qiufen,Hu Tiantian, et al. Statistic Characteristics and Strengthening Analysis of Cyclones over Yellow and Bohai Sea in recent 10 years[J]. Haiyang Xuebao,2021, 43(9):1–11 doi: 10.12284/hyxb2021089

近10年黄、渤海海域入海气旋的统计特征和加强原因分析

doi: 10.12284/hyxb2021089
基金项目: 国家自然科学基金(41675046);天津科委基金项目(16JCBJC21500);中国气象局预报员专项(CMAYBY2019-008,CMAYBY2020-006);国家重点研发计划重点专项(2019YFC1510100)
详细信息
    作者简介:

    朱男男(1980-),女,吉林省长春市人,主要从事海洋预报和研究工作。E-mail:18296759@qq.com

Statistic Characteristics and Strengthening Analysis of Cyclones over Yellow and Bohai Sea in recent 10 years

  • 摘要: 利用2008−2018年逐小时自动站资料、常规地面高空观测资料、NCEP-FNL资料,统计黄、渤海7级及以上气旋大风过程,围绕气旋加深率和气压梯度讨论气象因子与气旋强度和发展关系,根据Petterssen地面气旋发展公式讨论温度平流、涡度平流和非绝热加热在气旋中的作用。结果表明:(1) 70.5%气旋入海后加强,14.7%成为爆发性气旋,17.6%气旋入海过程强度不变,11.7%气旋入海后减弱。影响黄、渤海的温带气旋过程主要发生在秋季,春冬季次之,夏季一次也没有出现过。入海发展的气旋多位于200 hPa高空急流出口左侧或者分流辐散区,入海减弱的气旋多位于高空急流出口右侧。(2)影响黄、渤海域的气旋有3类:自西北向东南移动的蒙古气旋(17.6%);自西向东移动的黄河气旋(49%);自西南向东北移动的江(黄)淮气旋(33.4%)。江(黄)淮气旋在秋季容易发展为爆发性气旋。黄河气旋和蒙古气旋入海后最大风区域通常出现在气旋的西北象限(或偏西象限),江(黄)淮气旋最大风区域出现在气旋的东南象限。(3)温度平流是气旋入海发展最重要的物理量因子,温度平流对气旋入海发展比对气旋强度更敏感。5次爆发性气旋过程中温度平流和涡度平流均高于其他气旋过程。非绝热加热与气旋强度的相关性较强,与气旋发展相关性弱。(4)江(黄)淮气旋过程中温度平流和非绝热加热较强,黄河气旋过程中涡度平流较强,涡度平流和非绝热加热对蒙古气旋的作用较弱。
  • 图  1  34次过程气旋加深率和气压梯度(a), 34次过程地面中心最低气压(b),柱状图上数字为气旋发生月份

    Fig.  1  Cyclone deepening rates and barometric gradient (a), sea level minimum pressure in 34 cyclones processes (b). The number at the top of the histogram is the month in which the cyclone occurred

    图  2  蒙古气旋(a),黄河气旋(b),江淮气旋(c)路径和海平面气压(单位:hPa)

    a. 2013.03.09西北−东南路径;b. 2016.05.02西移路径;c. 2013.11.24西南−东北路径

    Fig.  2  Mongolian cyclone (a), Yellow River cyclone (b), Changjiang-Huaihe cyclone (c) tracks and sea level pressure (unit: hPa)

    a. 2013.03.09 northwest-southeast path; b. 2016.05.02 westward path; c. 2013.11.24 southwest-northeast path

    图  3  西北大风个例(a−c)和东南大风个例(d−f)的海平面气压场(单位:hPa)和10 m风场(风向杆,阴影区为风速14 m/s以上)

    Fig.  3  Sea level pressure (shade, unit:hPa) and 10 m-wind (wind bar) in (a−c) northwest gale cases and (d−f) southeast wind cases

    图  4  Z500和气旋加深率(a), Z850和气旋加深率(b),气压梯度与Z850Z500的相关系数(c),气旋加深率与Z850Z500的相关系数(d)

    Fig.  4  Z500 and cyclone deepening rate (a), Z850 and cyclone deepening rate (b), correlation coefficient between Z850, Z500 and barometric gradient (c), correlation coefficient between Z850, Z500and barometric gradient (d)

    图  5  34次气旋过程气压梯度、气旋加深率和温度平流(a),气压梯度、气旋加深率和涡度平流(b),气压梯度、气旋加深率和非绝热加热(c),气旋梯度与温度平流、涡度平流和非绝热加热的相关系数(d),气旋加深率与温度平流、涡度平流和非绝热加热的相关系数(e)

    Fig.  5  Distribution of barometric gradient, cyclone deepening rate and temperature advection in 34 cyclone processes (a); distribution of barometric gradient, cyclone deepening rate and vorticity advection in 34 cyclones processes (b); distribution of barometric gradient, cyclone deepening rate anddiabatic heating (c), correlation coefficient between temperature advection, vorticity advection, diabatic heating and barometric gradient (d); correlation coefficient between temperature advection, vorticity advection, diabatic heating and cyclone deepening rate (e)

    表  1  黄、渤海气旋气象因子统计(Z500是500 hPa系统与地面气旋中心距离,Z850 是850 hPa系统与地面气旋中心距离)

    Tab.  1  Statistics of meteorological factors of the cyclones inYellow Sea and Bohai Sea

    日期200 hPa
    高空急流
    影响系统地面气旋
    中心强度/hPa
    移动路径入海后是
    否加强
    气旋加深
    率/(hPa·h−1)
    最小气压梯度/
    (hPa·km−1)
    Z850/kmZ500/km
    1)2010.04.26−27出口左侧槽前/低涡1 003自西向东增强0.561.79148277
    2)2010.10.02−03出口左侧槽前/低涡1 010自西向东增强0.430.98279378
    3)2010.11.07−08出口左侧槽前/切变1 013自西北向东南增强0.2751.25423550
    4)2010.11.11−12出口左侧槽前/切变1 008自西南向东北增强0.5392.5275353
    5)2010.12.02−03出口左侧浅槽/低涡1 013自西向东不变01.396781100
    6)2010.12.10−11出口左侧槽前/切变1 003自西北向东南不变03.13268460
    7)2011.11.22−23出口左侧槽前/切变1 020自西向东增强0.431.92334461
    8)2012.09.27−28出口左侧槽前/低涡1 015自西向东增强0.3891.25346471
    9)2012.11.03−05出口左侧低涡/切变1 010自西向东增强0.5732.78173280
    10)2012.11.10−13出口左侧低涡/低涡1 003自西南向东北增强1.0284.5590385
    11)2012.12.05出口左侧低涡/切变1 018自西向东增强0.5991.34523744
    12)2012.12.31出口左侧浅槽/切变1 018自西向东不变00.938591 142
    13)2013.03.09出口右侧槽前/切变后998自西北向东南减弱−0.5294.17195728
    14)2013.05.27−28出口右侧槽前/低涡1 000自西南向东北减弱−0.3072.275080
    15)2013.11.24−25出口左侧槽前/低涡998自西南向东北增强1.7763.13135371
    16)2014.05.02出口右侧槽前/切变1 008自西向东增强0.1872.5643843
    17)2014.05.04出口左侧槽前/低涡1 010自西向东增强0.1351.37540800
    18)2014.12.19出口左侧槽前/切变1 020自西北向东南不变01.4400600
    19)2015.04.19辐散分流区槽前/低涡1 005自西南向东北增强0.4720.962751 376
    20)2015.10.01辐散分流区槽前/切变1 005自西南向东北增强1.2272.7880300
    21)2015.11.07急流轴下部浅槽/弱低涡1 015自西向东不变04.814671 305
    22)2016.02.13出口左侧槽前/低涡1 008自西南向东北增强0.6292.1250330
    23)2016.04.16辐散分流区槽前/低涡995自西南向东北增强0.9443.57145276
    24)2016.05.02−03辐散分流区低涡/低涡985自西南向东北增强1.3194.8190325
    25)2016.10.24−25出口右侧浅槽/弱切变1 010自西向东增强0.10.831702 700
    26)2016.12.08出口左侧浅槽/切变1 013自西北向东南增强0.091.71200323
    27)2017.01.19出口左侧槽前/切变1 028自西向东增强0.7893.0190400
    28)2017.03.04辐散分流区槽前/低涡1 000自西南向东北增强0.9064.9180607
    29)2018.02.13出口右侧槽前/切变1 010自西向东减弱−0.1031.56348756
    30)2018.11.08辐散分流区槽前/切变1 008自西南向东北增强1.1994.386163
    31)2009.12.04出口左侧槽前/切变1 013自西向东增强0.4312.31163378
    32)2009.12.29出口右侧浅槽/切变1 013自西北向东南不变00.124197423
    33)2008.04.09出口右侧低涡/低涡1 000自西向东增强0.1562.149259421
    34)2008.04.25出口右侧槽前/低涡1 003自西向东减弱−0.1241.769152313
    下载: 导出CSV

    表  2  不同类型气旋温度平流、涡度平流和非绝热加热的平均值

    Tab.  2  Average values of temperature advection, vorticity advection and diabatic heating for different types of cyclones

    温度平流/(10−4K·s−1)涡度平流/(10−8s−2)非绝热加热/(K·(6h)−1)
    黄河气旋5.721.79.7
    蒙古气旋5.914.97.0
    江淮气旋8.517.619.2
    下载: 导出CSV
  • [1] 李长青, 丁一汇. 西北太平洋爆发性气旋的诊断分析[J]. 气象学报, 1989, 47(2): 180−190.

    Li Changqing, Ding Yihui. A diagnostic study of an explosively deepening oceanic cyclone over the Northwest Pacific Ocean[J]. Acta Meteorologica Sinica, 1989, 47(2): 180−190.
    [2] 仪清菊, 丁一汇. 东亚和西太平洋爆发性温带气旋发生的气候学研究[J]. 大气科学, 1993, 17(3): 302−309. doi: 10.3878/j.issn.1006-9895.1993.03.06

    Yi Qingju, Ding Yihui. Climatology of the explosive cyclogenesis over East Asia and the West Pacific[J]. Chinese Journal of Atmospheric Sciences, 1993, 17(3): 302−309. doi: 10.3878/j.issn.1006-9895.1993.03.06
    [3] Sanders F. Explosive cyclogenesis in the West-Central North Atlantic Ocean 1981—1984[J]. Monthly Weather Review, 1986, 114(10): 1781−1794. doi: 10.1175/1520-0493(1986)114<1781:ECITWC>2.0.CO;2
    [4] Schultz D M, Keyser D, Bosart L F. The effect of large-scale flow on low-level frontal structure and evolution in midlatitude cyclones[J]. Monthly Weather Review, 1998, 126(7): 1767−1791. doi: 10.1175/1520-0493(1998)126<1767:TEOLSF>2.0.CO;2
    [5] Petterssen S, Smebye S J. On the development of extratropical storms[J]. Quarterly Journal of the Royal Meteorological Society, 1971, 97(414): 457−482. doi: 10.1002/qj.49709741407
    [6] 仪清菊, 丁一汇. 黄、渤海气旋暴发性发展的个例分析[J]. 应用气象学报, 1996, 7(4): 483−490.

    Yi Qingju, Ding Yihui. An analysis of the explosive cyclone over Yellow Sea and Bohai Sea[J]. Journal of Applied Meteorology Science, 1996, 7(4): 483−490.
    [7] Sanders F, Gyakum J R. Synoptic dynamic dimatology of the “bomb”[J]. Monthly Weather Review, 1980, 108(10): 1589−1606. doi: 10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2
    [8] 杜俊, 余志豪. 中国东部一次入海气旋的次级环流分析[J]. 海洋学报, 1991, 3(1): 43−50.

    Du Jun, Yu Zhihao. Secondary circulation analysis of an incoming cyclone in eastern China[J]. Haiyang Xuebao, 1991, 3(1): 43−50.
    [9] 熊秋芬, 牛宁, 章丽娜. 陆地上爆发性温带气旋的暖锋后弯结构分析[J]. 气象学报, 2013, 71(2): 239−249.

    Xiong Qiufen, Niu Ning, Zhang Lina. Analysis of the back-bent warm front structure associated with an explosive extratropical cyclone over land[J]. Acta Meteorologica Sinica, 2013, 71(2): 239−249.
    [10] 赵琳娜, 赵思雄. 一次引发华北和北京沙尘暴天气的快速发展气旋的诊断研究[J]. 大气科学, 2004, 28(5): 722−735. doi: 10.3878/j.issn.1006-9895.2004.05.07

    Zhao Linna, Zhao Sixiong. A diagnostic study of rapid developing cyclone in North China[J]. Chinese Journal of Atmospheric Sciences, 2004, 28(5): 722−735. doi: 10.3878/j.issn.1006-9895.2004.05.07
    [11] 张志刚, 赵琳娜, 矫梅燕. 一次引发强沙尘天气的快速发展蒙古气旋的诊断分析[J]. 气象, 2007, 33(5): 27−35. doi: 10.3969/j.issn.1000-0526.2007.05.004

    Zhang Zhigang, Zhao Linna, Jiao Meiyan. Diagnostic analysis of a rapid developing cyclone in Mongolia causing severe sandstorm[J]. Meteorological Monthly, 2007, 33(5): 27−35. doi: 10.3969/j.issn.1000-0526.2007.05.004
    [12] 熊秋芬, 张玉婷, 姜晓飞, 等. 锢囚气旋钩状云区暴雪过程的水汽源地及输送分析[J]. 气象, 2018, 44(10): 1267−1274. doi: 10.7519/j.issn.1000-0526.2018.10.003

    Xiong Qiufen, Zhang Yuting, Jiang Xiaofei et al. Analysis of moisture source and transport of snowstorm in hooked cloud area of an occluded cyclone[J]. Meteorological Monthly, 2018, 44(10): 1267−1274. doi: 10.7519/j.issn.1000-0526.2018.10.003
    [13] 熊秋芬, 张昕, 陶祖钰. 一次温带气旋涡度场演变特征及气旋发生发展机制分析[J]. 气象, 2016, 42(3): 294−304. doi: 10.7519/j.issn.1000-0526.2016.03.004

    Xiong Qiufen, Zhang Xin, Tao Zuyu. An analysis of vorticity evolution and physics mechanism on an extratropical cyclone[J]. Meteorological Monthly, 2016, 42(3): 294−304. doi: 10.7519/j.issn.1000-0526.2016.03.004
    [14] 熊秋芬, 苟尚, 张昕. 一次温带气旋特殊移动路径及其结构和成因分析[J]. 高原气象, 2016, 35(4): 1060−1072.

    Xiong Qiufen, Gou Shang, Zhang Xin. Structure and mechanism analysis of an extratropical cyclone on a cyclonic track[J]. Plateau Meteorology, 2016, 35(4): 1060−1072.
    [15] 郭达烽, 熊秋芬, 张昕. 一次北上江南气旋的结构特征与演变机理分析[J]. 气象, 2017, 43(4): 413−424. doi: 10.7519/j.issn.1000-0526.2017.04.003

    Guo Dafeng, Xiong Qiufen, Zhang Xin. Structure and mechanism analysis of one Jiangnan cyclone with Northern Track[J]. Meteorological Monthly, 2017, 43(4): 413−424. doi: 10.7519/j.issn.1000-0526.2017.04.003
    [16] 王慧, 张博, 吕心艳, 等. 2018年一次温带气旋入海爆发性增强时期的集合预报对比分析[J]. 气候与环境研究, 2019, 24(6): 741−754.

    Wang Hui, Zhang Bo, Lü Xinyan, et al. Comparative investigation of ensemble forecast of explosive cyclone entering Southern Yellow Sea in Spring 2018[J]. Climatic and Environmental Research, 2019, 24(6): 741−754.
    [17] 黄立文, 秦曾灏, 吴秀恒, 等. 海洋温带气旋爆发性发展数值试验[J]. 气象学报, 1999, 57(4): 410−427.

    Huang Liwen, Qin Zenghao, Wu Xiuheng, et al. Numerical simulation and experiment study on explosive marine cyclones[J]. Acta Meteorologica Sinica, 1999, 57(4): 410−427.
    [18] 赵兵科, 刘屹岷, 梁萍. 夏季梅雨期一次强江淮气旋位涡反演分析[J]. 高原气象, 2008, 27(S1): 158−169.

    Zhao Bingke, Liu Yimin, Liang Ping. A PV inversion analysis of strong cyclone over the Yangtze and Huaihe River Valleys during the Meiyu period of summer[J]. Plateau Meteorology, 2008, 27(S1): 158−169.
    [19] 赵兵科, 吴国雄, 姚秀萍. 2003年夏季梅雨期一次强气旋发展的位涡诊断分析[J]. 大气科学, 2008, 32(6): 1241−1255. doi: 10.3878/j.issn.1006-9895.2008.06.02

    Zhao Bingke, Wu Guoxiong, Yao Xiuping. A diagnostic analysis of potential vorticity associated with development of a strong cyclone during the Meiyu period of 2003[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(6): 1241−1255. doi: 10.3878/j.issn.1006-9895.2008.06.02
    [20] 查贲, 沈杭锋, 郭文政, 等. 一次爆发性气旋及其诱发的大风天气分析[J]. 高原气象, 2014, 33(6): 1697−1704. doi: 10.7522/j.issn.1000-0534.2013.00124

    Zha Ben, Shen Hangfeng, Guo Wenzheng, et al. Analysis of gale process caused by an explosive cyclone[J]. Plateau Meteorology, 2014, 33(6): 1697−1704. doi: 10.7522/j.issn.1000-0534.2013.00124
    [21] 尹尽勇, 曹越男, 赵伟, 等. 一次黄渤海入海气旋强烈发展的诊断分析[J]. 气象, 2011, 37(12): 1526−1533. doi: 10.7519/j.issn.1000-0526.2011.12.008

    Yin Jinyong, Cao Yuenan, Zhao Wei, et al. A diagnostic study of an intense developing extratropical cyclone over the Bohai and Yellow Sea[J]. Meteorological Monthly, 2011, 37(12): 1526−1533. doi: 10.7519/j.issn.1000-0526.2011.12.008
    [22] 黄彬, 陈涛, 康志明, 等. 诱发渤海风暴潮的黄河气旋动力学诊断和机制分析[J]. 高原气象, 2011, 30(4): 901−912.

    Huang Bin, Chen Tao, Kang Zhiming, et al. Dynamic diagnosis and mechanism analysis of Yellow River cyclone induced Bohai storm tide[J]. Plateau Meteorology, 2011, 30(4): 901−912.
    [23] 黄彬, 钱传海, 聂高臻, 等. 干侵入在黄河气旋爆发性发展中的作用[J]. 气象, 2011, 37(12): 1534−1543. doi: 10.7519/j.issn.1000-0526.2011.12.009

    Huang Bin, Qian Chuanhai, Nie Gaozhen, et al. Dry intrusion into the march 2007 strong storm surge over Bohai Sea[J]. Meteorological Monthly, 2011, 37(12): 1534−1543. doi: 10.7519/j.issn.1000-0526.2011.12.009
    [24] 苗春生, 宋萍, 王坚红, 等. 春夏季节黄河气旋经渤海发展时影响因子对比研究[J]. 气象, 2015, 41(9): 1068−1078.

    Miao Chunsheng, Song Ping, Wang Jianhong, et al. Comparative study of impact factors of the Yellow River cyclones over the Bohai Sea in spring and summer[J]. Meteorological Monthly, 2015, 41(9): 1068−1078.
    [25] 吕筱英, 孙淑清. 气旋爆发性发展过程的动力特征及能量学研究[J]. 大气科学, 1996, 20(1): 90−100. doi: 10.3878/j.issn.1006-9895.1996.01.11

    Lü Xiaoying, Sun Shuqing. A study on the dynamic features and energy conversion of the development of explosive cyclones[J]. Chinese Journal of Atmospheric Sciences, 1996, 20(1): 90−100. doi: 10.3878/j.issn.1006-9895.1996.01.11
    [26] 盛春岩, 杨晓霞. “09.4. 15”渤海和山东强风过程的动力学诊断分析[J]. 气象, 2012, 38(3): 266−273.

    Sheng Chunyan, Yang Xiaoxia. Dynamic diagnostic analysis of the 15 April 2009 Gale wind over the Bohai Sea and Shandong Province[J]. Meteorological Monthly, 2012, 38(3): 266−273.
    [27] Fu Gang, Sun Yawen, Sun Jilin, et al. A 38-year climatology of explosive cyclones over the northern Hemisphere[J]. Advances in Atmospheric Sciences, 2020, 37(2): 143−159. doi: 10.1007/s00376-019-9106-x
    [28] 盛春岩, 李建华, 范苏丹. 地形及下垫面对渤海大风影响的数值研究[J]. 气象, 2014, 40(11): 1338−1344. doi: 10.7519/j.issn.1000-0526.2014.11.006

    Sheng Chunyan, Li Jianhua, Fan Sudan. Numerical study of terrain and underlying surface effect on Bohai Gale[J]. Meteorological Monthly, 2014, 40(11): 1338−1344. doi: 10.7519/j.issn.1000-0526.2014.11.006
    [29] Petterssen S, Dunn G E, Means L L. Report of an experiment in forecasting of cyclone development[J]. Journal of the Atmospheric Sciences, 1955, 12(1): 58−67.
    [30] Yoshida A, Asuma Y. Structures and environment of explosively developing extratropical cyclones in the northwestern Pacific region[J]. Monthly Weather Review, 2004, 132(5): 1121−1142. doi: 10.1175/1520-0493(2004)132<1121:SAEOED>2.0.CO;2
    [31] 朱乾根, 林锦瑞, 寿绍文, 等. 天气学原理和方法[M]. 4版. 北京: 气象出版社, 2007: 320−323.

    Zhu Qiangen, Lin Jinrui, Shou Shaowen, et al. Synoptic Principles and Methods[M]. 4th ed. Beijing: China Meteorological Press, 2007: 320−323.
    [32] 姚秀萍, 闫丽朱, 张硕. 大气非绝热加热作用的研究进展与展望[J]. 气象, 2019, 45(1): 1−16. doi: 10.7519/j.issn.1000-0526.2019.01.001

    Yao Xiuping, Yan Lizhu, Zhang Shuo. Research progresses and prospects of atmospheric diabatic heating[J]. Meteorological Monthly, 2019, 45(1): 1−16. doi: 10.7519/j.issn.1000-0526.2019.01.001
    [33] 周小刚, 王秀明, 陶祖钰. 准地转理论基本问题回顾与讨论[J]. 气象, 2013, 39(4): 401−409. doi: 10.7519/j.issn.1000-0526.2013.04.001

    Zhou Xiaogang, Wang Xiuming, Tao Zuyu. Review and discussion of some basic problems of the quasi-geostrophic theory[J]. Meteorological Monthly, 2013, 39(4): 401−409. doi: 10.7519/j.issn.1000-0526.2013.04.001
    [34] 朱男男, 刘彬贤. 一次引发黄渤海大风的爆发性气旋过程诊断分析[J]. 气象与环境学报, 2015, 31(6): 59−67. doi: 10.3969/j.issn.1673-503X.2015.06.008

    Zhu Nannan, Liu Binxian. Diagnostic analysis of outbreak cyclone induced strong wind over Yellow and Bohai Seas[J]. Journal of Meteorology and Environment, 2015, 31(6): 59−67. doi: 10.3969/j.issn.1673-503X.2015.06.008
    [35] Emanuel K A, Fantini M, Thorpe A J. Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: two-dimensional models[J]. Journal of the Atmospheric Sciences, 1987, 44(12): 1559−1573. doi: 10.1175/1520-0469(1987)044<1559:BIIAEO>2.0.CO;2
    [36] Raymond D J. Nonlinear balance and potential-vorticity thinking at large ross by number[J]. Quarterly Journal of the Royal Meteorological Society, 1992, 118(507): 987−1015. doi: 10.1002/qj.49711850708
    [37] 秦听, 魏立新. 中国近海温带气旋的时空变化特征[J]. 海洋学报, 2015, 37(1): 43−52.

    Qin Ting, Wei Lixin. The statistic and variance of cyclones entering coastal waters of China in 1979—2012[J]. Haiyang Xuebao, 2015, 37(1): 43−52.
    [38] 朱男男, 刘彬贤, 孙密娜, 等. 引发渤海风暴潮一次江淮气旋北上过程诊断分析[J]. 气象与环境学报, 2016, 32(5): 10−17. doi: 10.3969/j.issn.1673-503X.2016.05.002

    Zhu Nannan, Liu Binxian, Sun Mina, et al. Diagnostic analysis of a northward cyclone over the Yangtze-Huaihe Rivers causing storm surge in the Bohai Sea[J]. Journal of Meteorology and Environment, 2016, 32(5): 10−17. doi: 10.3969/j.issn.1673-503X.2016.05.002
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  51
  • HTML全文浏览量:  5
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-05-21

目录

    /

    返回文章
    返回