留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合损失U-Net的SAR图像渤海海冰检测研究

徐欢 任沂斌

徐欢,任沂斌. 基于混合损失U-Net的SAR图像渤海海冰检测研究[J]. 海洋学报,2021,43(6):157–170 doi: 10.12284/hyxb2021084
引用本文: 徐欢,任沂斌. 基于混合损失U-Net的SAR图像渤海海冰检测研究[J]. 海洋学报,2021,43(6):157–170 doi: 10.12284/hyxb2021084
Xu Huan,Ren Yibin. Detecting sea ice of Bohai Sea using SAR images based on a hybrid loss U-Net model[J]. Haiyang Xuebao,2021, 43(6):157–170 doi: 10.12284/hyxb2021084
Citation: Xu Huan,Ren Yibin. Detecting sea ice of Bohai Sea using SAR images based on a hybrid loss U-Net model[J]. Haiyang Xuebao,2021, 43(6):157–170 doi: 10.12284/hyxb2021084

基于混合损失U-Net的SAR图像渤海海冰检测研究

doi: 10.12284/hyxb2021084
基金项目: 中国博士后科学基金(2019M662452);中国科学院战略先导专项(XDA19060101,XDA19090103);山东省重大科技创新工程(2019JZZY010102)
详细信息
    作者简介:

    徐欢(1994—),男,江苏省扬州市人,主要从事海洋空间信息技术研究。E-mail:2018224050@jou.edu.cn

    通讯作者:

    任沂斌(1990—),男,山东省青岛市人,博士后,主要从事基于人工智能的海洋大数据信息提取、建模、预测等方面研究。E-mail:yibinren@qdio.ac.cn

  • 中图分类号: P722.4; P731.15

Detecting sea ice of Bohai Sea using SAR images based on a hybrid loss U-Net model

  • 摘要: 渤海是我国重要的经济区,海冰灾害严重威胁着人类生产活动。合成孔径雷达具有全天候成像能力,研究渤海区域的SAR图像海冰检测具有重要意义。传统海冰检测方法受限于特征提取方法和建模方式,检测精度有待提升。深度学习具有极强的特征自学习能力,适用于图像检测问题。本文基于深度学习框架U-Net,以Sentinel-1双极化(VV和VH)合成孔径雷达图像为输入信息,设计混合损失函数优化传统U-Net模型,形成了基于混合损失U-Net的渤海海冰检测模型。将本文模型与传统海冰检测方法[脉冲耦合神经网络(PCNN)、马尔科夫随机场(MRF)和分水岭算法]和基于深度卷积神经网络(CNN)的深度学习方法进行了对比。实验结果表明:本文基于混合损失U-Net的海冰检测模型在重叠度、F1分数、精确度和召回率4项度量指标上分别达到了97.567%、98.769%、98.767%和98.771%,检测效果明显优于对比方法;双极化信息输入的检测结果比VV单极化输入的检测结果在F1分数、精确度、召回率和重叠度上分别提高了0.375%、0.111%、0.639%和0.740%;混合损失函数的检测结果比非混合损失函数的检测结果在F1分数、精确度、召回率和重叠度上分别提高了1.129%、0.947%、1.794%和2.231%;模型能对冰水沿线、冰间水道、冰间隙等细节进行有效检测;可应用于渤海区域整幅SAR图像的海冰检测,为海冰监测、海冰变化分析、海冰预报提供技术支撑。
  • 图  1  研究区域地理位置

    Fig.  1  Geographical location of the study area

    图  2  渤海海冰影像切片

    Fig.  2  Image slices of sea ice in the Bohai Sea

    图  3  海冰标注结果

    Fig.  3  Labeled slices of sea ice

    图  4  基于混合损失U-Net的海冰检测模型流程图

    Fig.  4  Flow chart of sea ice detection model based on a hybrid loss U-Net model

    图  5  卷积运算示例

    输入矩阵为5×5,卷积核为3×3,则该卷积层共有9个参数,此9个参数被整个隐藏层共享,则输出矩阵中Z的计算如图5所示

    Fig.  5  An example of convolution operation

    The input matrix is 5×5, the convolutional kernel is 3×3, the convolutional layer has 9 parameters, which are shared by the whole hidden layer. The calculation of Z in the output matrix is shown in Fig.5

    图  6  基于混合损失U-Net的海冰检测模型网络架构

    Fig.  6  Network architecture of sea ice detection model based on a hybrid loss U-Net model

    图  7  不同模型对海冰测试集的预测结果

    1~5中每行表示一个测试样本,每行从a-g分别表示样本的原始SAR图像切片、标签数据、本文U-Net预测结果、MRF预测结果、PCNN预测结果、分水岭算法预测结果和基于CNN的深度学习方法预测结果,白色为海冰,黑色为背景

    Fig.  7  Prediction results of different models for sea ice test sets

    In 1-5, each row represents a testing sample, a-g of each row are the original SAR image slice, the label data, prediction result of U-Net, prediction result of MRF, prediction result of PCNN, prediction result of WA, and prediction result of deep learning method based on CNN; white pixels are sea ice and black pixels are water

    图  8  不同损失函数的海冰检测结果对比

    影像成像日期为2020年2月19日;中心点坐标为40.718 3°N,121.722 8°E;d中误差区域3在e中能被正确检测,最后在c中能被正确检测,同理可见误差区域1和2

    Fig.  8  Comparisons of sea ice detection results with different loss functions

    The imaging date is February 19, 2020; the coordinates of the central point are 40.718 3°N, 121.722 8°E; the error area 3 in d can be correctly detected in e, and finally correctly detected in c, so are the error area 1 and 2

    图  9  不同极化信息海冰检测结果对比

    影像成像日期为2020年2月19日;中心点坐标为40.718 3°N,121.722 8°E;e中误差区域1在d中能被正确检测,最终在c中能被正确检测

    Fig.  9  Comparisons of sea ice detection results with different polarization information

    The imaging date is February 19, 2020; the coordinates of the central point are 40.718 3°N, 121.722 8°E; the error area 1 in e can be correctly detected in d, finally correctly detected in c

    图  10  混合损失函数不同权重比实验结果

    Fig.  10  Experimental results of hybrid loss functions with different weight ratios

    图  11  整幅SAR图像海冰检测结果

    影像成像日期为2020年1月2日;中心点坐标为40.718 7°N,121.724 5°E;a是原始SAR影像;b是模型检测的海冰

    Fig.  11  The sea ice detection results of the whole SAR image

    The imaging date is January 2, 2020; the coordinates of the central point are 40.718 7°N, 121.724 5°E; a is the original SAR image; b is the sea ice detected by the model

    表  1  SAR图像的详细信息

    Tab.  1  Details of SAR images

    图像集成像时间图像中心点坐标极化方式卫星
    12016年1月28日21:55:4340.4302°N,122.2560°EVH+VVA星
    22017年1月9日22:03:2240.3455°N,120.1869°EVH+VVB星
    32017年1月21日22:03:2140.3455°N,120.1881°EVH+VVB星
    42017年2月2日22:03:2140.3456°N,120.1881°EVH+VVB星
    52017年2月9日21:55:1739.7809°N,122.0780°EVH+VVB星
    62018年1月24日09:49:0740.7188°N,121.7244°EVH+VVA星
    72019年1月19日09:49:1440.7188°N,121.7254°EVH+VVA星
    82020年1月2日09:49:2140.7187°N,121.7245°EVH+VVA星
    92020年2月7日09:49:2040.7185°N,121.7233°EVH+VVA星
    102020年2月19日09:49:1940.7183°N,121.7228°EVH+VVA星
    下载: 导出CSV

    表  2  不同模型的度量结果

    Tab.  2  Measurement results of different models

    方法度量标准
    F1分数/%精确度/%召回率/%重叠度/%
    PCNN89.07786.18992.33281.929
    MRF89.45586.75493.40584.034
    分水岭算法88.97785.73392.47680.142
    CNN91.33389.06093.72684.049
    本文U-Net98.76998.76798.77197.567
    下载: 导出CSV

    表  3  不同损失函数的度量结果

    Tab.  3  Measurement results of different loss functions

    模型度量标准
    F1分数/%精确度/%召回率/%重叠度/%
    U-NetBCE97.66698.31097.03095.438
    U-NetDice97.87597.84097.91095.839
    U-NetBCED98.76998.76798.77197.567
    下载: 导出CSV

    表  4  不同极化方式的度量结果

    Tab.  4  Measurement results of different polarization information

    模型输入度量标准
    F1分数/%精确度/%召回率/%重叠度/%
    VH93.24093.24096.06189.806
    VV98.40098.65798.14496.850
    VV+VH98.76998.76798.77197.567
    下载: 导出CSV
  • [1] Mori M, Kosaka Y, Watanabe M, et al. A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling[J]. Nature Climate Change, 2019, 9(2): 123−129. doi: 10.1038/s41558-018-0379-3
    [2] Olonscheck D, Mauritsen T, Notz D. Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations[J]. Nature Geoscience, 2019, 12(6): 430−434. doi: 10.1038/s41561-019-0363-1
    [3] 自然资源部. 中国海洋灾害公报[R]. 北京: 自然资源部, 2010−2019.

    Ministry of Natural Resources. China’s maritime disaster communique[R]. Beijing: Ministry of Natural Resources, 2010−2019.
    [4] Soh L K, Tsatsoulis C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2): 780−795. doi: 10.1109/36.752194
    [5] 王利亚, 何宜军, 张彪, 等. HY-2卫星扫描微波辐射计数据反演北极海冰漂移速度[J]. 海洋学报, 2017, 39(9): 110−120.

    Wang Liya, He Yijun, Zhang Biao, et al. Retrieval of Arctic sea ice drift using HY-2 Satellite scanning microwave radiometer data[J]. Haiyang Xuebao, 2017, 39(9): 110−120.
    [6] Dabboor M, Geldsetzer T. Towards sea ice classification using simulated RADARSAT constellation mission compact polarimetric SAR imagery[J]. Remote Sensing of Environment, 2014, 140: 189−195. doi: 10.1016/j.rse.2013.08.035
    [7] Fetterer F, Bertoia C, Ye Jingping. Multi-year ice concentration from RADARSAT[C]//IGARSS’97.1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing—A Scientific Vision for Sustainable Development. Singapore: IEEE, 1997, 1: 402−404.
    [8] Su Hua, Wang Yunpeng, Xiao Jie, et al. Improving MODIS sea ice detectability using gray level co-occurrence matrix texture analysis method: A case study in the Bohai Sea[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 85: 13−20. doi: 10.1016/j.isprsjprs.2013.07.010
    [9] Zakhvatkina N Y, Alexandrov V Y, Johannessen O M, et al. Classification of sea ice types in ENVISAT synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 51(5): 2587−2600.
    [10] 李小娜, 张杰, 戴永寿, 等. 灰度共生矩阵纹理特征对SAR海冰漂移监测的增强性能研究[J]. 海洋科学, 2018, 42(4): 9−17.

    Li Xiaona, Zhang Jie, Dai Yongshou, et al. Research on the enhanced performance of texture feature for sea ice drift monitoring based on gray level co-occurrence matrices[J]. Marine Sciences, 2018, 42(4): 9−17.
    [11] Soh L K, Tsatsoulis C, Gineris D, et al. ARKTOS: An intelligent system for SAR sea ice image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(1): 229−248. doi: 10.1109/TGRS.2003.817819
    [12] Ochilov S, Clausi D A. Operational SAR sea-ice image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4397−4408. doi: 10.1109/TGRS.2012.2192278
    [13] 郑敏薇, 李晓明, 任永政. 高分3号星载合成孔径雷达极地海冰自动检测方法研究[J]. 海洋学报, 2018, 40(9): 113−124.

    Zheng Minwei, Li Xiaoming, Ren Yongzheng. The method study on automatic sea ice detection with GaoFen-3 synthetic aperture radar data in polar regions[J]. Haiyang Xuebao, 2018, 40(9): 113−124.
    [14] 张明, 吕晓琪, 张晓峰, 等. 结合纹理特征的SVM海冰分类方法研究[J]. 海洋学报, 2018, 40(11): 149−156.

    Zhang Ming, Lü Xiaoqi, Zhang Xiaofeng, et al. Research on SVM sea ice classification based on texture features[J]. Haiyang Xuebao, 2018, 40(11): 149−156.
    [15] 李晓明, 张强. 星载合成孔径雷达北极海冰覆盖观测[J]. 海洋学报, 2019, 41(4): 145−146.

    Li Xiaoming, Zhang Qiang. Observation of Arctic sea ice cover by spaceborne synthetic aperture radar[J]. Haiyang Xuebao, 2019, 41(4): 145−146.
    [16] Leigh S, Wang Zhijie, Clausi D A. Automated ice–water classification using dual polarization SAR satellite imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 52(9): 5529−5539.
    [17] Karvonen J A. Baltic sea ice SAR segmentation and classification using modified pulse-coupled neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1566−1574. doi: 10.1109/TGRS.2004.828179
    [18] Wang Chao, Zhang Hong, Wang Yuanyuan, et al. Sea ice classification with convolutional neural networks using sentinel-L ScanSAR images[C]//IGARSS 2018−2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE, 2018: 7125−7128.
    [19] Li Xiaofeng, Liu Bin, Zheng Gang, et al. Deep-learning-based information mining from ocean remote-sensing imagery[J]. National Science Review, 2020, 7(10): 1584−1605. doi: 10.1093/nsr/nwaa047
    [20] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436−444. doi: 10.1038/nature14539
    [21] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Red Hook, NY, United States: Curran Associates Inc., 2012: 1097−1105.
    [22] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]. San Diego, CA: International Conference on Learning Representations, 2015.
    [23] He Kaiming, Zhang Xiangyu, Ren Shaoqing, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016: 770−778.
    [24] Ren Yibin, Chen Huanfa, Han Yong, et al. A hybrid integrated deep learning model for the prediction of citywide spatio-temporal flow volumes[J]. International Journal of Geographical Information Science, 2020, 34(4): 802−823. doi: 10.1080/13658816.2019.1652303
    [25] Zhang Xudong, Li Xiaofeng. Combination of satellite observations and machine learning method for internal wave forecast in the Sulu and Celebes seas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020: 1−11.
    [26] Zheng Gang, Li Xiaofeng, Zhang Ronghua, et al. Purely satellite data–driven deep learning forecast of complicated tropical instability waves[J]. Science Advances, 2020, 6(29): eaba1482. doi: 10.1126/sciadv.aba1482
    [27] Li Jinxin, Wang Chao, Wang Shigang, et al. Gaofen-3 sea ice detection based on deep learning[C]//2017 Progress in Electromagnetics Research Symposium-Fall (PIERS-FALL). Singapore, Singapore: IEEE, 2017: 933−939.
    [28] Xu Yan, Scott K A. Sea ice and open water classification of SAR imagery using CNN-based transfer learning[C]//2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Fort Worth, TX, USA: IEEE, 2017: 3262−3265.
    [29] 黄冬梅, 李明慧, 宋巍, 等. 卷积神经网络和深度置信网络在SAR影像冰水分类的性能评估[J]. 中国图象图形学报, 2018, 23(11): 1720−1732.

    Huang Dongmei, Li Minghui, Song Wei, et al. Performance of convolutional neural network and deep belief network in sea ice-water classification using SAR imagery[J]. Journal of Image and Graphics, 2018, 23(11): 1720−1732.
    [30] Dierking W. Mapping of different sea ice regimes using images from Sentinel-1 and ALOS Synthetic Aperture Radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 48(3): 1045−1058.
    [31] Geldsetzer T, Yackel J J. Sea ice type and open water discrimination using dual co-polarized C-band SAR[J]. Canadian Journal of Remote Sensing, 2009, 35(1): 73−84. doi: 10.5589/m08-075
    [32] Fabijańska A. Segmentation of corneal endothelium images using a U-Net-based convolutional neural network[J]. Artificial Intelligence in Medicine, 2018, 88: 1−13. doi: 10.1016/j.artmed.2018.04.004
    [33] Lian Sheng, Luo Zhiming, Zhong Zhun, et al. Attention guided U-Net for accurate iris segmentation[J]. Journal of Visual Communication and Image Representation, 2018, 56: 296−304. doi: 10.1016/j.jvcir.2018.10.001
    [34] Liu Bin, Li Xiaofeng, Zheng Gang. Coastal inundation mapping from bitemporal and dual-polarization SAR imagery based on deep convolutional neural networks[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 9101−9113. doi: 10.1029/2019JC015577
    [35] Shen Dongliang, Liu Bin, Li Xiaofeng. Sea surface wind retrieval from synthetic aperture radar data by deep convolutional neural networks[C]//IGARSS 2019−2019 IEEE International Geoscience and Remote Sensing Symposium. Japan, Yokohama, IEEE, 2019: 8035−8038.
    [36] Foumelis M. ESA sentinel-1 toolbox generation of SAR backscattering mosaics[DB/OL].[2020-06-28]. http://step.esa.int/main/doc/tutorials/. 2015.
    [37] Russell B C, Torralba A, Murphy K P, et al. LabelMe: a database and web-based tool for image annotation[J]. International Journal of Computer Vision, 2008, 77(1/3): 157−173.
    [38] Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Munich, Germany: Springer, 2015: 234−241.
    [39] Deepan P, Sudha L R. Object classification of remote sensing image using deep convolutional neural network[M]//Peter D, Alavi A H, Javadi B, et al. The Cognitive Approach in Cloud Computing and Internet of Things Technologies for Surveillance Tracking Systems. London: Academic Press, 2020: 107−120.
    [40] Wang Mingchang, Zhang Xinyue, Niu Xuefeng, et al. Scene classification of high-resolution remotely sensed image based on ResNet[J]. Journal of Geovisualization and Spatial Analysis, 2019, 3(2): 16. doi: 10.1007/s41651-019-0039-9
    [41] Gao Ligang, Chen Paiyu, Yu Shimeng. Demonstration of convolution kernel operation on resistive cross-point array[J]. IEEE Electron Device Letters, 2016, 37(7): 870−873. doi: 10.1109/LED.2016.2573140
    [42] 袁非牛, 章琳, 史劲亭, 等. 自编码神经网络理论及应用综述[J]. 计算机学报, 2019, 42(1): 203−230.

    Yuan Feiniu, Zhang Lin, Shi Jinting, et al. Theories and applications of auto-encoder neural networks: a literature survey[J]. Chinese Journal of Computers, 2019, 42(1): 203−230.
    [43] Kingma D, Ba J. Adam: A method for stochastic optimization[C]. San Diego, CA: International Conference on Learning Representations, 2015.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  1051
  • HTML全文浏览量:  217
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-18
  • 修回日期:  2020-09-23
  • 网络出版日期:  2021-04-02
  • 刊出日期:  2021-06-30

目录

    /

    返回文章
    返回