留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大陆岛入海沉积物通量的估算研究

李高聪 蔡廷禄 李志强 高抒

李高聪,蔡廷禄,李志强,等. 大陆岛入海沉积物通量的估算研究[J]. 海洋学报,2021,43(11):1–10 doi: 10.12284/hyxb2021077
引用本文: 李高聪,蔡廷禄,李志强,等. 大陆岛入海沉积物通量的估算研究[J]. 海洋学报,2021,43(11):1–10 doi: 10.12284/hyxb2021077
Li Gaocong,Cai Tinglu,Li Zhiqiang, et al. How to predict the sediment flux for continental shelf islands[J]. Haiyang Xuebao,2021, 43(11):1–10 doi: 10.12284/hyxb2021077
Citation: Li Gaocong,Cai Tinglu,Li Zhiqiang, et al. How to predict the sediment flux for continental shelf islands[J]. Haiyang Xuebao,2021, 43(11):1–10 doi: 10.12284/hyxb2021077

大陆岛入海沉积物通量的估算研究

doi: 10.12284/hyxb2021077
基金项目: 国家自然科学基金(41676079);国家科技基础资源调查专项(2019FY202104;2019FY202105;2019FY202106);广东海洋大学科研启动经费(060302112010)
详细信息
    作者简介:

    李高聪(1987-),男,广东省梅州市人,博士,主要从事海洋地质学研究。Email:ligaocong2013@163.com

    通讯作者:

    高抒(1956-),男,教授,主要从事海洋沉积动力学和沉积地质学研究。Email:sgao@sklec.ecnu.edu.cn

How to predict the sediment flux for continental shelf islands

  • 摘要: 大陆岛入海沉积物通量(Qs)信息对于精确解译大陆架沉积记录的研究是个重要补充。针对如何估算大陆岛Qs的科学问题,本文以中国东南部海域的8 227个大陆岛为例,提出了一种基于邻近大陆中小型河流Qs的经验公式计算大陆岛Qs的解决方案。该方案在实施时需设置两个假定,即大陆岛的Qs法则遵循邻近大陆中小河流的Qs法则和可将1个大陆岛当作1个河流流域计算其Qs。结果表明:(1)经验公式计算的大陆岛Qs为其最小估计值;如考虑大陆岛流域的具体情况,实际的Qs值会轻微提高,但其增幅不超过n0.13(n为流域数量);(2)经验公式能获取大陆岛Qs的大致数量级信息;大陆岛的总面积为4 418.49 km2,对应Qs的数量级为106 t/yr,与邻近大陆1条中小型河流的数量级相当;(3)在大河河口湾充填阶段完成以前,大陆岛沉积物是内陆架泥质沉积体的主要物源之一。因此,大陆岛入海沉积物会对大陆架沉积体系的形成和演化造成一定程度的影响,需引起研究人员的高度重视。
  • 图  1  大陆岛及其平均气温控制点和邻近大陆河流及其水文控制站分布

    Fig.  1  Locations of continental shelf islands and their control of average temperature, and adjacent continent rivers and their gauging stations

    图  2  经验公式计算所得Qs的相对误差:全球公式(a);修正公式(b)

    Fig.  2  Relative errors between the predicted sediment flux and observations of the 23 coastal watersheds: Global equations (a); Modified equations (b).

    图  3  大陆岛的面积(a)、最大高程(b)、平均气温(c)和Qs(d–f)空间分布图

    Fig.  3  Locations of the area (a), maximum relief (b), average temperature (c) and sediment flux (d-f) of continental shelf islands

    表  1  研究区26条河流特征参数特征值统计表

    Tab.  1  Statistic of characteristics values of the 26 coastal rivers

    编号河流名称流域面积/km2最大高程/m平均气温/℃水文站集水面积/km2Qs (104 t/yr)Q (108 m3)时间段主要参考文献
    1钱塘江55 5581 86517.0兰溪18 233155.95314.41960–1979[35]
    2椒江–永安溪2 7041 38217.2柏枝岙2 47542.3222.101960–1979[35]
    3椒江–始丰溪1 6101 14416.8沙段1 48233.3110.401960–1979[35]
    4瓯江18 1001 92919.0鹤城13 400195.15133.751960–1979[35]
    5飞云江3 7191 69016.3峃口1 93033.4322.201960–1979[35]
    6鳌江1 5301 23218.5埭头3436.384.911960–1979[35]
    7水北溪4251 14118.4高滩3416.514.121970–1979[37]
    8赛江5 6381 64916.9白塔3 27058.3540.551960–1979[37]
    9霍童溪2 2441 62715.5洋中坂2 08231.4924.781960–1979[37]
    10闽江60 9922 15818.0竹岐54 500748.00539.001950–1978[38]
    11木兰溪1 7321 45120.0濑溪1 07029.309.851959–1979[39]
    12晋江5 6291 60020.5石砻5 460217.2850.041950–1979[40]
    13九龙江–北溪9 6401 82320.5浦南8 490166.7282.411952–1979[40]
    14九龙江–西溪3 9401 66621.1郑店3 41973.9036.371952–1979[40]
    15黄冈河1 62178421.4红霞1 27030.6013.001956–1961[34]
    16韩江30 1121 82320.8潮安29 077703.44237.101955–1979[41]
    17榕江4 6501 28521.4东桥园2 01665.4028.101949–1979[34]
    18东江27 0401 52920.4博罗25 325296.00224.671954–1979[42]
    19北江46 7101 92920.0石角38 363532.67406.571954–1979[42]
    20漠阳河6 0911 33722.2双捷4 34580.0059.101954–1979[34]
    21鉴江6 9481 70322.0化州6 157197.0049.601953–1979[43]
    22九洲江3 33759622.3缸瓦窑3 08634.0018.401953–1979[44]
    23南流河9 2321 25722.0长乐6 592115.0052.791956–1979[45]
    24南渡江7 0331 81124.0龙塘6 84144.9959.981957–1979[36]
    25昌化江5 1501 86723.9宝桥4 63483.8837.991957–1979[36]
    26万泉河3 6931 86723.5加积3 23652.9749.891957–1979[36]
    下载: 导出CSV

    表  2  沉积物入海通量($ {Q_s},{\rm{Mt}}/{\rm{yr}} $)经验公式

    Tab.  2  Prediction equations of sediment flux

    方程全球公式修正公式备注
    Model1$ {Q}_{s}=65{A}^{0.56} $$ {Q}_{s}=112.88{A}^{0.91} $A为流域面积(106 km2
    Model2$ {{Q}_{s}=\alpha 10}^{(0.41{\rm{log}}\left(A\right)+1.28{\rm{log}}\left(R\right)-3.68)} $$ {{Q}_{s}=\alpha 10}^{(0.87{\rm{log}}\left(A\right)+0.31{\rm{log}}\left(R\right)-2.73)} $α为经验常数0.0315,A为流域面积(km2),R为最大高程(m)
    Model3$ {Q}_{s}=2\alpha {A}^{0.45}{R}^{0.57}{e}^{-0.09T} $$ {Q}_{s}=2\alpha {A}^{0.96}{R}^{-0.72}{e}^{-0.01T} $α为经验常数0.0315,A为流域面积(km2),R为最大高程(m),T为平均气温(℃)
    下载: 导出CSV

    表  3  “海南岛”Qs观测值、预测值和相对误差统计表

    Tab.  3  Relative errors between the sediment flux predicted by the modified equations and observations of rivers in Hainan Island

    河流观测值(Mt/yr)Model1Model2Model3
    预测值(Mt/yr)RE预测值(Mt/yr)RE预测值(Mt/yr)RE
    南渡江0.451.231.721.291.871.021.27
    昌化江0.840.860.030.930.110.69−0.18
    万泉河0.530.620.170.680.280.49−0.07
    3河均值0.610.900.640.970.750.730.34
    “海南岛”1.822.460.352.530.392.090.15
    下载: 导出CSV

    表  4  东海和南海内陆架泥质沉积体系陆源供给特征(表中数值均指数量级)

    Tab.  4  Sediment sources characteristic of the mud sedimentary systems in inner continental shelf of East and South China Seas

    物源数量(条/个)A(km2R(m)Qs(t/yr)空间特征时间特征
    大型河流100106~107103107~108沿大陆岸线有限点源、长距离近2 000 yr
    中小河流101102~104102~103104~106沿大陆岸线多点源、中距离持续供给
    大陆岛103≤102≤102100~105沿海岛岸线密集点源、短距离持续供给
    下载: 导出CSV
  • [1] Whittaker R J, Fernández-Palacios J M. Island Biogeography: Ecology, Evolution, and Conservation[M]. Oxford: Oxford University Press, 2007.
    [2] Stankowski S, Johnson M S. Biogeographic discordance of molecular phylogenetic and phenotypic variation in a continental archipelago radiation of land snails[J]. BMC Evolutionary Biology, 2014, 14: 2. doi: 10.1186/1471-2148-14-2
    [3] 夏小明. 中国海岛(礁)名录[M]. 北京: 海洋出版社, 2012.

    Xia Xiaoming. China Island (Reef) List[M]. Beijing: Ocean Press, 2012.
    [4] Baldacchino G. Archipelago Tourism: Policies and Practices[M]. London: Routledge, 2015.
    [5] Kurniawan F, Adrianto L, Bengen D G, et al. Vulnerability assessment of small islands to tourism: the case of the Marine Tourism Park of the Gili Matra Islands, Indonesia[J]. Global Ecology and Conservation, 2016, 6: 308−326. doi: 10.1016/j.gecco.2016.04.001
    [6] Blackburn D C, Siler C D, Diesmos A C, et al. An adaptive radiation of frogs in a southeast Asian island archipelago[J]. Evolution, 2013, 67(9): 2631−2646. doi: 10.1111/evo.12145
    [7] Whittaker R J, Fernández-Palacios J M, Matthews T J, et al. Island biogeography: taking the long view of nature’s laboratories[J]. Science, 2017, 357(6354): eaam8326. doi: 10.1126/science.aam8326
    [8] Ogasawara K. Neogene paleogeography and marine climate of the Japanese Islands based on shallow-marine molluscs[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108(3/4): 335−351.
    [9] Bover P, Quintana J, Alcover J A. Three islands, three worlds: paleogeography and evolution of the vertebrate fauna from the Balearic Islands[J]. Quaternary International, 2008, 182(1): 135−144. doi: 10.1016/j.quaint.2007.06.039
    [10] Nittrouer C A, Kuehl S A, Demaster D J, et al. The deltaic nature of Amazon shelf sedimentation[J]. Geological Society of America Bulletin, 1986, 97(4): 444−458. doi: 10.1130/0016-7606(1986)97<444:TDNOAS>2.0.CO;2
    [11] Kuehl S A, Levy B M, Moore W S, et al. Subaqueous delta of the Ganges-Brahmaputra river system[J]. Marine Geology, 1997, 144(1/3): 81−96.
    [12] Cattaneo A, Correggiari A, Langone L, et al. The late-Holocene Gargano subaqueous delta, Adriatic shelf: sediment pathways and supply fluctuations[J]. Marine Geology, 2003, 193(1/2): 61−91.
    [13] Neill C F, Allison M A. Subaqueous deltaic formation on the Atchafalaya Shelf, Louisiana[J]. Marine Geology, 2005, 214(4): 411−430. doi: 10.1016/j.margeo.2004.11.002
    [14] Liu J P, Xue Z, Ross K, et al. Fate of sediments delivered to the sea by Asian large rivers: long-distance transport and formation of remote alongshore clinothems[J]. The Sedimentary Record, 2009, 7(4): 4−9. doi: 10.2110/sedred.2009.4.4
    [15] Gao S, Liu Y L, Yang Y, et al. Evolution status of the distal mud deposit associated with the Pearl River, northern South China Sea continental shelf[J]. Journal of Asian Earth Sciences, 2015, 114: 562−573. doi: 10.1016/j.jseaes.2015.07.024
    [16] 李安春, 张凯棣. 东海内陆架泥质沉积体研究进展[J]. 海洋与湖沼, 2020, 51(4): 705−727. doi: 10.11693/hyhz20200500145

    Li Anchun, Zhang Kaidi. Research progress of mud wedge in the inner continental shelf of the East China Sea[J]. Oceanologia et Limnologia Sinica, 2020, 51(4): 705−727. doi: 10.11693/hyhz20200500145
    [17] 高抒. 中国东部陆架全新世沉积体系: 过程-产物关系研究进展评述[J]. 沉积学报, 2013, 31(5): 845−855.

    Gao Shu. Holocene sedimentary systems over the Bohai, Yellow and East China Sea region: recent progress in the study of process-product relationships[J]. Acta Sedimentologica Sinica, 2013, 31(5): 845−855.
    [18] Gao S, Collins M B. Holocene sedimentary systems on continental shelves[J]. Marine Geology, 2014, 352: 268−294. doi: 10.1016/j.margeo.2014.03.021
    [19] Nittrouer C A, Wright L D. Transport of particles across continental shelves[J]. Reviews of Geophysics, 1994, 32(1): 85−113. doi: 10.1029/93RG02603
    [20] Jia J J, Gao J H, Cai T L, et al. Sediment accumulation and retention of the Changjiang (Yangtze River) subaqueous delta and its distal muds over the last century[J]. Marine Geology, 2018, 401: 2−16. doi: 10.1016/j.margeo.2018.04.005
    [21] Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers[J]. The Journal of Geology, 1992, 100(5): 525−544. doi: 10.1086/629606
    [22] Syvitski J P M, Peckham S D, Hilberman R, et al. Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective[J]. Sedimentary Geology, 2003, 162(1/2): 5−24.
    [23] Li G C, Gao S, Wang Y P, et al. Sediment flux from the Zhoushan Archipelago, eastern China[J]. Journal of Geographical Sciences, 2018, 28(4): 387−399. doi: 10.1007/s11442-018-1479-8
    [24] Ahnert F. Functional relationships between denudation, relief, and uplift in large, mid-latitude drainage basins[J]. American Journal of Science, 1970, 268(3): 243−263. doi: 10.2475/ajs.268.3.243
    [25] McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2): 295−303. doi: 10.1086/648222
    [26] Holeman J N. The sediment yield of major rivers of the world[J]. Water Resources Research, 1968, 4(4): 737−747. doi: 10.1029/WR004i004p00737
    [27] 汪亚平, 潘少明, Wang H V, 等. 长江口水沙入海通量的观测与分析[J]. 地理学报, 2006, 61(1): 35−46. doi: 10.3321/j.issn:0375-5444.2006.01.004

    Wang Yaping, Pan Shaoming, Wang H V, et al. Measurements and analysis of water discharges and suspended sediment fluxes in Changjiang estuary[J]. Acta Geographica Sinica, 2006, 61(1): 35−46. doi: 10.3321/j.issn:0375-5444.2006.01.004
    [28] Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. The Journal of Geology, 1983, 91(1): 1−21. doi: 10.1086/628741
    [29] Li G C, Zhou L, Qi Y L, et al. Threshold sediment flux for the formation of river deltas in Hainan Island, southern China[J]. Journal of Geographical Sciences, 2019, 29(1): 146−160. doi: 10.1007/s11442-019-1589-y
    [30] Mulder T, Syvitski J P M. Climatic and morphologic relationships of rivers: implications of sea-level fluctuations on river loads[J]. The Journal of Geology, 1996, 104(5): 509−523. doi: 10.1086/629849
    [31] Syvitski J P M, Milliman J D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean[J]. The Journal of Geology, 2007, 115(1): 1−19. doi: 10.1086/509246
    [32] Milliman J D, Farnsworth K L, Albertin C S. Flux and fate of fluvial sediments leaving large islands in the East Indies[J]. Journal of Sea Research, 1999, 41(1/2): 97−107.
    [33] Li Gaocong, Xia Qiong, Fu Dongyang, et al. Calculating the sediment flux of the small coastal watersheds: a modification of global equations[J]. Acta Oceanologica Sinica, 2021, 40(1): 147−154. doi: 10.1007/s13131-020-1615-z
    [34] 王文介, 黄金森, 毛树珍, 等. 华南沿海和近海现代沉积[M]. 北京: 科学出版社, 1991.

    Wang Wenjie, Huang Jinsen, Mao Shuzhen, et al. Modern Deposition of Coastal and Offshore in South China[M]. Beijing: Science Press, 1991.
    [35] 张伯虎, 吴修广, 谢东凤. 近50年来浙江入海河流水沙通量变化过程[J]. 泥沙研究, 2015(6): 21−26.

    Zhang Bohu, Wu Xiuguang, Xie Dongfeng. Variation of water and sediment in rivers to sea in recent five Decades in Zhejiang Province[J]. Journal of Sediment Research, 2015(6): 21−26.
    [36] 杨志宏, 贾建军, 王欣凯, 等. 近50年海南三大河入海水沙通量特征及变化[J]. 海洋通报, 2013, 32(1): 92−99. doi: 10.11840/j.issn.1001-6392.2013.01.014

    Yang Zhihong, Jia Jianjun, Wang Xinkai, et al. Characteristics and variations of water and sediment fluxes into the sea of the top three rivers of Hainan in recent 50 years[J]. Marine Science Bulletin, 2013, 32(1): 92−99. doi: 10.11840/j.issn.1001-6392.2013.01.014
    [37] 陈胜晶. 福建闽东诸小河泥沙及其变化分析[J]. 亚热带水土保持, 2007, 19(4): 20−23. doi: 10.3969/j.issn.1002-2651.2007.04.006

    Chen Shengjing. Analysis on the sediment status and changes in the streams of the East Fujian province[J]. Subtropical Soil and Water Conservation, 2007, 19(4): 20−23. doi: 10.3969/j.issn.1002-2651.2007.04.006
    [38] 张章新. 闽江流域水文特性分析[J]. 水文, 2000, 20(6): 55−58. doi: 10.3969/j.issn.1000-0852.2000.06.017

    Zhang Zhangxin. Analysis of hydrological characteristics of Minjiang River basin[J]. Hydrology, 2000, 20(6): 55−58. doi: 10.3969/j.issn.1000-0852.2000.06.017
    [39] 陈斌. 木兰溪下游水沙特性及河道演变[J]. 水利科技, 1988(1): 47−51.

    Chen Bin. Water and sediment characteristics and channel evolution in the lower reach of the Mulan River[J]. Hydraulic Science and Technology, 1988(1): 47−51.
    [40] 邵恒方. 福建三大河流沙量及其变化分析[J]. 福建水土保持, 1991(1): 42−46.

    Shao Hengfang. Variation on sediment load of three major rivers of Fujian Province, China[J]. Fujian Soil and Water Conservation, 1991(1): 42−46.
    [41] 杨传训, 张正栋, 张倩, 等. 1955-2012年韩江入海径流量和输沙量多尺度变化特征[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 68−75.

    Yang Chuanxun, Zhang Zhengdong, Zhang Qian, et al. Characteristics of multi-scale variability of water discharge and sediment load in the Hanjiang River during 1955-2012[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(3): 68−75.
    [42] Zhang Wei, Mu Shousheng, Zhang Yanjing, et al. Temporal variation of suspended sediment load in the Pearl River due to human activities[J]. International Journal of Sediment Research, 2011, 26(4): 487−497. doi: 10.1016/S1001-6279(12)60007-9
    [43] 黄志明. 鉴江流域水文特性分析[J]. 现代科技, 2010, 9(3): 37−39, 33.

    Huang Zhiming. Hydrological characteristics of the Jian River Catchment[J]. Modern Science and Technology, 2010, 9(3): 37−39, 33.
    [44] 谢天. 九洲江流域“2013·08”暴雨洪水特性分析[J]. 甘肃水利水电技术, 2013, 49(11): 6−8.

    Xie Tian. On the stormy flood characteristics of the Jiuzhou River Catchment during the August 2013[J]. Gansu Water Resources and Hydropower Technology, 2013, 49(11): 6−8.
    [45] 徐国琼, 欧芳兰. 南流江泥沙运动规律及其与人类活动的关联[C]//中国水力发电工程学会水文泥沙专业委员会第七届学术讨论会论文集. 成都: 四川出版集团·四川科学技术出版社, 2007: 69-75.

    Xu Guoqiong, Ou Fanglan. Sediment dynamics of the Nanliu River and its relationship with human activities[C]//The 2007 Symposium of the China Hydroelectric Engineering Society of Hydrology and Sediment. Chengdu: Sichuan Publishing Group, Sichuan Science and Technology Press, 2007: 69-75.
    [46] Xie Dongfeng, Pan Cunhong, Wu Xiuguang, et al. The variations of sediment transport patterns in the outer Changjiang Estuary and Hangzhou Bay over the last 30 years[J]. Journal of Geophysical Research: Oceans, 2017, 122(4): 2999−3020. doi: 10.1002/2016JC012264
    [47] Xu Kehui, Li Anchun, Liu J P, et al. Provenance, structure, and formation of the mud wedge along inner continental shelf of the East China Sea: a synthesis of the Yangtze dispersal system[J]. Marine Geology, 2012, 291-294: 176−191. doi: 10.1016/j.margeo.2011.06.003
    [48] Liu J T, Hsu R T, Yang R J, et al. A comprehensive sediment dynamics study of a major mud belt system on the inner shelf along an energetic coast[J]. Scientific Reports, 2018, 8(1): 4229. doi: 10.1038/s41598-018-22696-w
    [49] Liu Yunling, Gao Shu, Wang Yaping, et al. Distal mud deposits associated with the Pearl River over the northwestern continental shelf of the South China Sea[J]. Marine Geology, 2014, 347: 43−57. doi: 10.1016/j.margeo.2013.10.012
    [50] Gao Shu. Holocene shelf-coastal sedimentary systems associated with the Changjiang River: an overview[J]. Acta Oceanologica Sinica, 2013, 32(12): 4−12. doi: 10.1007/s13131-013-0390-5
    [51] Zhang Xia, Lin Chunming, Dalrymple R W, et al. Facies architecture and depositional model of a macrotidal incised-valley succession (Qiantang River estuary, eastern China), and differences from other macrotidal systems[J]. Geological Society of America Bulletin, 2014, 126(3/4): 499−522.
    [52] Trenhaile A S. The Geomorphology of Rock Coasts[M]. Oxford: Clarendon Press, 1987.
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  69
  • HTML全文浏览量:  11
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-05-07

目录

    /

    返回文章
    返回