Comparative study on the Cenozoic tectonic and sedimentary evolution in the deep water areas of the Zhujiang River Estuary Basin and the Qiongdongnan Basin
-
摘要: 南海北部陆缘记录了南海形成演化的历史,但是其新生代构造沉积演化特征在东段和西段的差异及其原因目前还不太清楚。本文分别在珠江口盆地和琼东南盆地的深水区选择了数口构造地理位置相似的井通过精细地层回剥分析,重建了两沉积盆地的沉积速率和沉降速率并结合前人研究成果进行了对比分析。研究结果发现,两沉积盆地在裂陷期的沉积和沉降特征基本相似,但是两者在裂后期的构造沉积演化特征差异明显。珠江口盆地深水区沉积和沉降速率都表现为幕式变化特征,其中沉积速率表现为“两快三慢”的特征而沉降速率表现为“两快一慢”的特征。琼东南盆地深水区的沉积速率表现为“地堑式”变化特征,但是沉降速率表现为“台阶式”上升的变化特征。琼东南盆地“台阶式”上升的沉降速率推测主要是受到海南地幔柱伴随红河断裂的右旋走滑而向西北漂移的影响,这也与南海西北部的岩浆活动以及周围盆地的沉降特征吻合。红河断裂在2.1 Ma BP的右旋走滑控制了琼东南盆地1.8 Ma BP以来的快速沉积和加速沉降分布。Abstract: The formation and evolution of the South China Sea is well recorded in the northern continental margin. But the discrepancies of the tectonic and sedimentary evolution between the west and east of the northern margin are still enigmatic. Several drilling and simulation wells with analogous geological setting are chosen from the deep water areas of the Zhujiang River Estuary Basin and the Qiongdongnan Basin. Based on backstripping and previous studies, high resolution sedimentation rates and subsidence rates are constructed. Results show that both two basins are characterized by analogous sedimentation rates and subsidence rates in the syn-rift stage, but significant discrepancies are revealed in the post-rift stage. Episodic sedimentary and tectonic evolution characteristics are revealed in the Zhujiang River Estuary Basin, sedimentation rates are characterized by “two rapid sedimentation periods and three slow sedimentation periods” and subsidence rates are characterized by “two rapid subsidence periods and one slow subsidence period”. But the sedimentation rates are characterized by “graben” style evolution, and the subsidence rates are characterized by “step-up” style evolution in the Qiongdongnan Basin. The “step-up” subsidence rates in the Qiongdongnan Basin might be controlled by activities of the Hainan mantle plume which moved northwestward derived from the dextral strike-slip of the Red River Fault. And it coincided with the magmatism and the subsidence rate in the northwest margin of the South China Sea. The distribution of the rapid deposition and accelerated subsidence in the Qiongdongnan Basin after 1.8 Ma BP could be mainly controlled by the meanwhile dextral strike-slip of the Red River Fault.
-
表 1 珠江口盆地深水区钻井和模拟井构造位置分布
Tab. 1 Tectonic locations of the drilling and simulation wells in the deep water area of the Zhujiang River Estuary Basin
井名 LW31 Z1 Z2 Z3 Z4 Z5 构造位置 白云凹陷东南缘 白云凹陷中心 白云凹陷南部 荔湾凹陷 南部隆起西部 南部隆起东部 表 2 琼东南盆地深水区钻井和模拟井构造位置分布表
Tab. 2 Tectonic locations of the drilling and simulation wells in the deep water area of the Qiongdongnan Basin
井名 LS33 LS22 YC35 Q1 Q2 Q3 Q4 Q5 Q6 构造位置 陵南低
凸起北部乐东−陵水
凹陷东部乐东−陵水
凹陷西部乐东−陵水
凹陷东部陵南低
凸起中部松南−宝岛
凹陷长昌凹陷
西缘北礁凸起 长昌凹陷
中心表 3 琼东南盆地深水区L33井参数表(位置见图1)[40, 47]
Tab. 3 The data of L33 Well in the deep water area of the Qiongdongnan Basin (see the location in Fig.1)[40, 47]
界面名称 界面深度/m 年龄/Ma 地层名称 最小古水深/m 最大古水深/m 沉积环境 岩性编码 海床表面 1 462.8 0 乐山组 1 462.8 1 462.8 半深海 1.57 T20 2 214.5 1.8 乐山组 1 000 1 200 半深海 1.57 T28 2 491.5 3.2 莺歌海组 900 1 100 半深海 1.65 T30 2 630 5.5 莺歌海组 800 1 000 半深海 1.65 T31 2 955.5 8.2 黄流组 700 900 外陆架和半深海 1.67 T40 3 150 11.6 黄流组 0 50 外陆架和半深海 1.67 T41 3 331 13.4 梅山组 50 200 外陆架 1.65 T50 3 450 16 梅山组 50 200 外陆架 1.65 T52 3 519 18.3 三亚组 0 50 陆表海 1.65 T60 3 608 23 三亚组 0 20 陆表海 1.65 T62 3 844 25.5 陵水组 50 200 浅海 1.67 T70 4 008 28.4 陵水组 0 50 滨浅海 1.67 T71 4 048 29.9 崖城组 0 50 滨海 1.57 T80 4 243 32 崖城组 0 30 海陆交互 1.57 T100 5 300 45 岭头组 0 0 湖泊 1.5 表 4 珠江口盆地深水区L31井参数表(位置见图1)[50]
Tab. 4 The data of L31 Well in the deep water area of the Zhujiang River Estuary Basin (see the location in Fig.1)[50]
界面名称 界面深度/m 年龄/Ma 地层名称 最小古水深/m 最大古水深/m 沉积环境 岩性编码 海床表面 1 480 0 万山组 1 480 1 480 深海 2 SB5.5 1 986 6 万山组 1 390 1 450 深海 2 SB10.5 2 094 11.9 粤海组 1 290 1 420 深海 2 SB12.5 2 200 13.2 韩江组 1 220 1 400 深海 2 SB13.8 2 519 14.3 韩江组 950 1 150 深海 2 SB15.5 2 666 15.5 韩江组 860 1 060 深海 2 SB16.5 2 730 16.3 韩江组 840 1 040 深海 2 SB17.5 2 793 17.2 珠江组 700 900 深海 2 MFS18.5 2 885 17.9 珠江组 800 1 000 深海 2 SB21 3 064 19.8 珠江组 600 800 深海 1.90 SB23.8 3 114 23.03 珠江组 0 20 浅海陆架 1.97 ZHSB6 3 156 24.4 珠海组 0 20 滨浅海 1.59 ZHSB5 3 330 26 珠海组 50 200 前三角洲 1.71 ZHSB4 3 502 27 珠海组 50 200 前三角洲 1.87 ZHSB3 3 623 27.8 珠海组 50 100 三角洲前缘 1.69 ZHSB2 3 728 29 珠海组 0 50 滨浅海 1.74 T70 3 971 33 恩平组 0 50 滨浅海 1.96 T80 4 418 39 神狐−文昌组 0 30 湖泊 1.31 Tg 5 052 66 神狐−文昌组 0 0 湖泊 1.38 -
[1] Holloway N H. North Palawan Block, Philippines: its relation to Asian mainland and role in evolution of South China Sea[J]. American Association of Petroleum Geologists Bulletin, 1982, 66: 1355−1383. [2] Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implication for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research, 1993, 98: 6299−6328. doi: 10.1029/92JB02280 [3] Brune S, Heine C, Perez-gussinye M, et al. Rift migration explains continental margin asymmetry and crustal hyper-extension[J]. Nature Communications, 2014, 5: 1−9. [4] Expedition 349 Scientists. Opening of the South China Sea and its implications for southeast Asian tectonics, climates, and deep mantle processes since the late Mesozoic[R]. International Ocean Discovery Program Preliminary Report, 2014, 349: 1−109. [5] Li C F, Xu X, Lin J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry, Geophysics, Geosystems, 2014, 15: 4958−4983. doi: 10.1002/2014GC005567 [6] 解习农, 张成, 任建业, 等. 南海南北大陆边缘盆地构造演化差异性对油气成藏条件控制[J]. 地球物理学报, 2011, 54(12): 3280−3291. doi: 10.3969/j.issn.0001-5733.2011.12.026Xie Xinong, Zhang Cheng, Ren Jianye, et al. Effects of distinct tectonic evolutions on hydrocarbon accumulation in northern and southern continental marginal basins of South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3280−3291. doi: 10.3969/j.issn.0001-5733.2011.12.026 [7] 解习农, 任建业, 王振峰, 等. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系[J]. 地学前缘, 2015, 22(1): 77−87.Xie Xinong, Ren Jianye, Wang Zhenfeng, et al. Difference of tectonic evolution of continental marginal basins of South China Sea and relationship with SCS spreading[J]. Earth Science Frontiers, 2015, 22(1): 77−87. [8] 任建业, 庞雄, 雷超, 等. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示[J]. 地学前缘, 2015, 22(1): 102−114.Ren Jianye, Pang Xiong, Lei Chao, et al. Ocean and continent transition in passive continental margins and analysis of lithospheric extension and breakup process: Implication for research of the deepwater basins in the continental margins of South China Sea[J]. Earth Science Frontiers, 2015, 22(1): 102−114. [9] 任建业, 庞雄, 于鹏, 等. 南海北部陆缘深水—超深水盆地成因机制分析[J]. 地球物理学报, 2018, 61(12): 4901−4920. doi: 10.6038/cjg2018L0558Ren Jianye, Pang Xiong, Yu Peng, et al. Characteristics and formation mechanism of deepwater and ultra-deepwater basins in the northern continental margin of the South China Sea[J]. Chinese Journal of Geophysics, 2018, 61(12): 4901−4920. doi: 10.6038/cjg2018L0558 [10] 丘学林, 赵明辉, 敖威, 等. 南海西南次海盆与南沙地块的OBS探测和地壳结构[J]. 地球物理学报, 2011, 54(12): 3117−3128. doi: 10.3969/j.issn.0001-5733.2011.12.012Qiu Xuelin, Zhao Minghui, Ao Wei, et al. OBS survey and crustal structure of the Southwest Sub-basin and Nansha Block, South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3117−3128. doi: 10.3969/j.issn.0001-5733.2011.12.012 [11] 李家彪, 丁巍伟, 吴自银, 等. 南海西南海盆的渐进式扩张[J]. 科学通报, 2012, 57(20): 1896−1905. doi: 10.1360/csb2012-57-20-1896Li Jiabiao, Ding Weiwei, Wu Ziyin, et al. The propagation of seafloor spreading in the southwestern subbasin, South China Sea[J]. Chinese Science Bulletin, 2012, 57(20): 1896−1905. doi: 10.1360/csb2012-57-20-1896 [12] 孙珍, 刘思青, 庞雄, 等. 被动大陆边缘伸展–破裂过程研究进展[J]. 热带海洋学报, 2016, 35(1): 1−16. doi: 10.11978/2015030Sun Zhen, Liu Siqing, Pang Xiong, et al. Recent research progress on the rifting-breakup process in passive continental margins[J]. Journal of Tropical Oceanography, 2016, 35(1): 1−16. doi: 10.11978/2015030 [13] Nissen S S, Hayes D E, Buhl P, et al. Deep penetration seismic soundings across the northern margin of the South China Sea[J]. Journal of Geophysical Research, 1995, 100: 22407−22433. doi: 10.1029/95JB01866 [14] Qiu X L, Ye S Y, Wu S M, et al. Crustal structure across the Xisha Trough, northwestern South China Sea[J]. Tectonophysics, 2001, 341(1/4): 179−193. [15] 张功成, 刘震, 米立军, 等. 珠江口盆地−琼东南盆地深水区古近系沉积演化[J]. 沉积学报, 2009, 27(4): 632−641.Zhang Gongcheng, Liu Zhen, Mi Lijun, et al. Sedimentary evolution of Paleogene series in deep water area of Zhujiangkou and Qiongdongnan Basin[J]. Acta Sedimentologica Sinica, 2009, 27(4): 632−641. [16] 宋洋, 赵长煜, 张功成, 等. 南海北部珠江口与琼东南盆地构造−热模拟研究[J]. 地球物理学报, 2011, 54(12): 3057−3069. doi: 10.3969/j.issn.0001-5733.2011.12.007Song Yang, Zhao Changyu, Zhang Gongcheng, et al. Research on tectono-thermal modeling for Qiongdongnan Basin and Pearl River Mouth Basin in the northern South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3057−3069. doi: 10.3969/j.issn.0001-5733.2011.12.007 [17] Xia Z, Wan Z, Wang X, et al. The tectonic differences between the east and the west in the deep-water area of the northern South China Sea[J]. Acta Oceanologica Sinica, 2016, 35(1): 86−95. doi: 10.1007/s13131-016-0799-8 [18] Sun Z, Ding W, Zhao X, et al. The latest spreading periods of the South China Sea: New constraints from macrostructure analysis of IODP Expedition 349 cores and geophysical data[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(10): 9980−9998. doi: 10.1029/2019JB017584 [19] Ding W W, Sun Z, Geoffroy M, et al. Lateral evolution of the rift-to-drift transition in the South China Sea: Evidence from multi-channel seismic data and IODP Expeditions 367&368 drilling results[J]. Earth and Planetary Science Letters, 2020, 531: 115932. doi: 10.1016/j.jpgl.2019.115932 [20] 董冬冬, 王大伟, 张功成, 等. 珠江口盆地深水区新生代构造沉积演化[J]. 中国石油大学学报(自然科学版), 2009, 33(5): 17−22.Dong Dongdong, Wang Dawei, Zhang Gongcheng, et al. Cenozoic tectonic and sedimentary evolution of deepwater area, Pearl River Mouth Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2009, 33(5): 17−22. [21] Zhou D, Sun Z, Liao J, et al. Filling history and post-breakup acceleration of sedimentation in Baiyun Sag, deepwater northern South China Sea[J]. Journal of Earth Science, 2009, 20(1): 160−171. doi: 10.1007/s12583-009-0015-2 [22] He M, Zhong G, Liu X, et al. Rapid post-rift tectonic subsidence events in the Pearl River Mouth Basin, northern South China Sea margin[J]. Journal of Asian Earth Sciences, 2017, 147: 271−283. doi: 10.1016/j.jseaes.2017.07.024 [23] Xie H, Zhou D, Pang X, et al. Cenozoic sedimentary evolution of deepwater sags in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geophysical Research, 2013, 34(3/4): 159−173. [24] Xie H, Zhou D, Li Y, et al. Cenozoic tectonic subsidence in deepwater sags in the Pearl River Mouth Basin, northern South China Sea[J]. Tectonophysics, 2014, 615−616: 182−198. doi: 10.1016/j.tecto.2014.01.010 [25] Shi X B, Burov E, Leroy S, et al. Intrusion and its implication for subsidence: A case from the Baiyun Sag, on the northern margin of the South China Sea[J]. Tectonophysics, 2005, 407(1/2): 117−134. [26] Clift P, Sun Z. The sedimentary and tectonic evolution of the Yinggehai-Song Hong basin and the southern Hainan margin, South China Sea: Implications for Tibetan uplift and monsoon intensification[J]. Journal of Geophysical Research, 2006, 111(B6): 1−28. [27] Zhao Z, Sun Z, Wang Z, et al. The high resolution sedimentary filling in Qiongdongnan Basin, Northern South China Sea[J]. Marine Geology, 2015, 361: 11−24. doi: 10.1016/j.margeo.2015.01.002 [28] Zhao Z, Sun Z, Sun L, et al. Cenozoic tectonic subsidence in the Qiongdongnan Basin, northern South China Sea[J]. Basin Research, 2018, 30: 269−288. doi: 10.1111/bre.12220 [29] Xie X N, Müller R D, Li S, et al. Origin of anomalous subsidence along the Northern South China Sea margin and its relationship to dynamic topography[J]. Marine and Petroleum Geology, 2006, 23(7): 745−765. doi: 10.1016/j.marpetgeo.2006.03.004 [30] Shi X B, Jiang H, Yang J, et al. Models of the rapid post-rift subsidence in the eastern Qiongdongnan Basin, South China Sea: Implications for the development of the deep thermal anomaly[J]. Basin Research, 2017, 29(3): 340−362. doi: 10.1111/bre.12179 [31] Lebedev S, Nolet G. Upper mantle beneath Southeast Asia from S velocity tomography[J]. Journal of Geophysical Research, 2003, 08(B1): 20−48. [32] 徐义刚, 魏静娴, 邱华宁, 等. 用火山岩制约南海的形成演化: 初步认识与研究设想[J]. 科学通报, 2012, 57(20): 1863−1878. doi: 10.1360/csb2012-57-20-1863Xu Yigang, Wei Jingxian, Qiu Huaning, et al. Opening and evolution of the South China Sea constrained by studies on volcanic rocks: Preliminary results and a research design[J]. Chinese Science Bulletin, 2012, 57(20): 1863−1878. doi: 10.1360/csb2012-57-20-1863 [33] Xia S, Zhao D, Sun J, et al. Teleseismic imaging of the mantle beneath southernmost China: new insights into the Hainan Plume[J]. Gondwana Research, 2016, 36: 46−56. doi: 10.1016/j.gr.2016.05.003 [34] Zhou D, Ru K, Chen H, et al. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region[J]. Tectonophysics, 1995, 251: 161−177. doi: 10.1016/0040-1951(95)00018-6 [35] 庞雄, 陈长民, 吴梦霜, 等. 珠江深水扇系统沉积和周边重要地质事件[J]. 地球科学进展, 2006, 21(8): 793−799. doi: 10.3321/j.issn:1001-8166.2006.08.003Pang Xiong, Chen Changmin, Wu Mengshuang, et al. The Pearl River deep-water fan systems and significant geological event[J]. Advances in Earth Science, 2006, 21(8): 793−799. doi: 10.3321/j.issn:1001-8166.2006.08.003 [36] 庞雄, 陈长民, 邵磊, 等. 白云运动: 南海北部渐新统−中新统重大地质事件及其意义[J]. 地质论评, 2007, 53(2): 145−151. doi: 10.3321/j.issn:0371-5736.2007.02.001Pang Xiong, Chen Changmin, Shao Lei, et al. Baiyun Movement, a great tectonic event on the Oligocene-Miocene boundary in the northern South China Sea and its implications[J]. Geological Review, 2007, 53(2): 145−151. doi: 10.3321/j.issn:0371-5736.2007.02.001 [37] 邵磊, 雷永昌, 庞雄, 等. 珠江口盆地构造演化及对沉积环境的控制作用[J]. 同济大学学报(自然科学版), 2005, 33(9): 1177−1181. doi: 10.3321/j.issn:0253-374X.2005.09.007Shao Lei, Lei Yongchang, Pang Xiong, et al. Tectonic evolution and its controlling for sedimentary environment in Pearl River Mouth Basin[J]. Journal of Tongji University (Natural Science), 2005, 33(9): 1177−1181. doi: 10.3321/j.issn:0253-374X.2005.09.007 [38] 邵磊, 庞雄, 乔培军, 等. 珠江口盆地的沉积充填与珠江的形成演变[J]. 沉积学报, 2008, 26(2): 179−185.Shao Lei, Pang Xiong, Qiao Peijun, et al. Sedimentary filling of the Pearl River Mouth Basin and its response to the evolution of the Pearl River[J]. Acta Sedimentologica Sinica, 2008, 26(2): 179−185. [39] 雷超. 南海北部莺歌海−琼东南盆地新生代构造变形格局及其演化过程分析[D]. 武汉: 中国地质大学, 2012.Lei Chao. Structure and evolution of Yinggehai and Qiongdongnan basins, South China Sea: Implications for Cenozoic tectonics in Southeast Asia[D]. Wuhan: China University of Geosciences, 2012. [40] 杜同军. 琼东南盆地层序地层和深水区沉积充填特征[D]. 青岛: 中国海洋大学, 2013.Du Tongjun. Sequence stratigraphic and deep water sedimentary characteristic in the Qiongdongnan Basin[D]. Qingdao: Ocean University of China, 2013. [41] 李平鲁. 珠江口盆地新生代构造运动[J]. 中国海上油气, 1993, 7(6): 11−17.Li Pinglu. Cenozoic tectonic movement in the Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 1993, 7(6): 11−17. [42] Watts A B, Ryan W B F. Flexure of the lithosphere and continental margin basins[J]. Tectonophysics, 1976, 36(1/3): 25−44. [43] Steckler M S, Watts A B. Subsidence of the Atlantictype continental margin off New York[J]. Earth and Planetary Science Letters, 1978, 41: 1−13. doi: 10.1016/0012-821X(78)90036-5 [44] Sclater J G, Christie P A F. Continental stretching: an explanation of the post-mid-Cretaceous subsidence of the central North Sea Basin[J]. Journal of Geophysical Research, 1980, 85(B7): 3711−3739. doi: 10.1029/JB085iB07p03711 [45] 谢辉, 周蒂, 陈广浩, 等. 盆地沉降史回剥分析的不确定性及参数影响[J]. 热带海洋学报, 2014, 33(5): 50−59. doi: 10.3969/j.issn.1009-5470.2014.05.007Xie Hui, Zhou Di, Chen Guanghao, et al. Uncertainty and parameterization in backstripping of basin subsidence analysis[J]. Journal of Tropical Oceanography, 2014, 33(5): 50−59. doi: 10.3969/j.issn.1009-5470.2014.05.007 [46] 袁玉松, 杨树春, 胡圣标, 等. 琼东南盆地构造沉降史及其主控因素[J]. 地球物理学报, 2008, 51(2): 376−383. doi: 10.3321/j.issn:0001-5733.2008.02.010Yuan Yusong, Yang Shuchun, Hu Shengbiao, et al. Tectonic subsidence of Qiongdongnan Basin and its main control factors[J]. Chinese Journal of Geophysics, 2008, 51(2): 376−383. doi: 10.3321/j.issn:0001-5733.2008.02.010 [47] 李娜. 琼东南盆地深水区渐新世以来沉积古环境及物源分析[D]. 青岛: 中国海洋大学, 2013.Li Na. The sedimentary paleoenvironment and provenance analysis in the deepwater area of Qiongdongnan Basin since Oligocene[D]. Qingdao: Ocean University of China, 2013. [48] 刘晓峰. 琼东南盆地深水区沉积古环境和物源演化[D]. 青岛: 中国海洋大学, 2015.Liu Xiaofeng. The evolution of sedimentary paleoenvironment and provenance in the deepwater area of the Qiongdongnan Basin[D]. Qingdao: Ocean University of China, 2015. [49] 苏明, 解习农, 姜涛, 等. 琼东南盆地裂后期S40界面特征及其地质意义[J]. 地球科学——中国地质大学学报, 2011, 36(5): 886−894.Su Ming, Xie Xinong, Jiang Tao, et al. Characteristics of S40 boundary and its significance in Qiongdongnan Basin, northern continental margin of South China Sea[J]. Earth Science—Journal of China University of Geosciences, 2011, 36(5): 886−894. [50] 谢辉. 珠江口盆地白云深水区沉降史分析及其构造涵义[D]. 广州: 中国科学院南海海洋研究所, 2014.Xie Hui. The Cenozoic subsidence history and its implications of the deepwater sags in the Pearl River Mouth Basin[D]. Guangzhou: South China Sea Institute of Oceanology, Chinese Academy of Sciences, 2014. [51] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4793): 1156−1167. doi: 10.1126/science.235.4793.1156 [52] Clift P, Lin J, Barckhausen U. Evidence of low flexural rigidity and low viscosity lower continental crust during continental break-up in the South China Sea[J]. Marine and Petroleum Geology, 2002, 19(8): 951−970. doi: 10.1016/S0264-8172(02)00108-3 [53] Sun Z, Zhao Z, Zhou D, Pang X, et al. Dynamics analysis of the Baiyun Sag in the Pearl River Mouth Basin, north of the South China Sea[J]. Acta Oceanologica Sinica, 2008, 82(1): 73−83. [54] Clift P, Wan S M, Blusztajn J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies[J]. Earth-Science Reviews, 2014, 130: 86−102. doi: 10.1016/j.earscirev.2014.01.002 [55] 李亚敏, 施小斌, 徐辉龙, 等. 琼东南盆地构造沉降的时空分布及裂后期异常沉降机制[J]. 吉林大学学报(地球科学版), 2012, 42(1): 47−57.Li Yamin, Shi Xiaobin, Xu Huilong, et al. Temporal and spatial distribution of tectonic subsidence and discussion on formation mechanism of anomalous post-rift tectonic subsidence in the Qiongdongnan Basin[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(1): 47−57. [56] 杨军, 施小斌, 王振峰, 等. 琼东南盆地张裂期沉降亏损与裂后期快速沉降成因[J]. 海洋地质与第四纪地质, 2015, 35(1): 81−90.Yang Jun, Shi Xiaobin, Wang Zhenfeng, et al. Origin of syn-rift subsidence deficit and rapid post-rift subsidence in Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 81−90. [57] Clift P. Coupled onshore erosion and offshore sediment loading as causes of lower crust flow on the margins of SCS[J]. Geoscience Letters, 2015, 2(1): 13−23. doi: 10.1186/s40562-015-0029-9 [58] 丘学林, 周蒂, 夏戡原, 等. 南海西沙海槽地壳结构的海底地震仪探测与研究[J]. 热带海洋学报, 2000, 19(2): 9−18. doi: 10.3969/j.issn.1009-5470.2000.02.002Qiu Xuelin, Zhou Di, Xia Kanyuan, et al. OBH experiment and crustal structure of Xisha Trough, South China Sea[J]. Journal of Tropical Oceanography, 2000, 19(2): 9−18. doi: 10.3969/j.issn.1009-5470.2000.02.002 [59] 孙珍, 钟志洪, 周蒂. 莺歌海盆地构造演化与强烈沉降机制的分析和模拟[J]. 地球科学——中国地质大学学报, 2007, 32(3): 347−356.Sun Zhen, Zhong Zhihong, Zhou Di. The analysis and analogue modeling of the tectonic evolution and strong subsidence in the Yinggehai Basin[J]. Earth Science—Journal of China University of Geosciences, 2007, 32(3): 347−356. [60] 陈梅, 施小斌, 任自强, 等. 南海西北部沉积盆地晚新生代沉降、沉积特征: 对深部异常过程的响应[J]. 地球物理学报, 2019, 62(2): 587−603. doi: 10.6038/cjg2019L0757Chen Mei, Shi Xiaobin, Ren Ziqiang, et al. Late Cenozoic subsidence and sedimentary features of the basins in the northwestern South China Sea: implications for the development of the deep anomalous progress[J]. Chinese Journal of Geophysics, 2019, 62(2): 587−603. doi: 10.6038/cjg2019L0757 [61] 丁望. 南海扩张期后西北缘岩浆—构造活动解析[D]. 北京: 中国地质大学, 2017.Ding Wang. Approachto magmatic and tectonic activities in post-spreading stage of the South China Sea by analyzing relics from its northern and western margins[D]. Beijing: China University of Geosciences, 2017. [62] 冯英辞, 詹文欢, 孙杰, 等. 西沙海域上新世以来火山特征及其形成机制[J]. 热带海洋学报, 2017, 36(3): 73−79.Feng Yingci, Zhan Wenhuan, Sun Jie, et al. The formation mechanism and characteristics of volcanoes in the Xisha waters since Pliocene[J]. Journal of Tropical Oceanography, 2017, 36(3): 73−79. [63] 张峤. 南海北部陆缘新生代岩浆活动及构造意义[D]. 青岛: 中国科学院青岛海洋研究所, 2014.Zhang Qiao. Cenozoic magmatism in the northern continental margin of the South China Sea and its implication for the tectonic evolution of the rifted margin[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2014. [64] 鄢全树. 南海新生代碱性玄武岩的特征及其地球动力学意义[D]. 青岛: 中国科学院青岛海洋研究所, 2008.Yan Quanshu. Geochemistry of Cenozoic alkali basalts from the South China Sea and its geodynamical significance[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2008. [65] 王贤觉, 吴明清, 梁德华, 等. 南海玄武岩的某些地球化学特征[J]. 地球化学, 1984, 13(4): 332−340. doi: 10.3321/j.issn:0379-1726.1984.04.005Wang Xianjue, Wu Mingqing, Liang Dehua, et al. Some geochemical characteristics of basalts in the South China Sea[J]. Geochimica, 1984, 13(4): 332−340. doi: 10.3321/j.issn:0379-1726.1984.04.005 [66] 刘昭蜀, 赵焕庭, 范时清, 等. 南海地质[M]. 北京: 科学出版社, 2002.Liu Zhaoshu, Zhao Huanting, Fan Shiqing, et al. Geology of the South China Sea[M]. Beijing: Science Press, 2002. [67] Zou H, Fan Q. U–Th isotopes in Hainan basalts: Implications for sub-asthenospheric origin of EM2 mantle end member and the dynamics of melting beneath Hainan Island[J]. Lithos, 2010, 116(1/2): 145−152. [68] 向宏发, 万景林, 韩竹军, 等. 红河断裂带大型右旋走滑运动发生时代的地质分析与ft测年[J]. 中国科学D辑: 地球科学, 2006, 36(11): 977−987.Xiang Hongfa, Wan Jinglin, Han Zhujun, et al. Geological analysis and FT dating of the large-scale right-lateral strike-slip movement of the Red River Fault Zone[J]. Science China: Earth Sciences, 2006, 36(11): 977−987.