留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

珠江口盆地−琼东南盆地深水区新生代构造沉积演化对比分析

谢辉 周蒂 石红才 李元平 孔德明

谢辉,周蒂,石红才,等. 珠江口盆地−琼东南盆地深水区新生代构造沉积演化对比分析[J]. 海洋学报,2021,43(3):48–61 doi: 10.12284/hyxb2021055
引用本文: 谢辉,周蒂,石红才,等. 珠江口盆地−琼东南盆地深水区新生代构造沉积演化对比分析[J]. 海洋学报,2021,43(3):48–61 doi: 10.12284/hyxb2021055
Xie Hui,Zhou Di,Shi Hongcai, et al. Comparative study on the Cenozoic tectonic and sedimentary evolution in the deep water areas of the Zhujiang River Estuary Basin and the Qiongdongnan Basin[J]. Haiyang Xuebao,2021, 43(3):48–61 doi: 10.12284/hyxb2021055
Citation: Xie Hui,Zhou Di,Shi Hongcai, et al. Comparative study on the Cenozoic tectonic and sedimentary evolution in the deep water areas of the Zhujiang River Estuary Basin and the Qiongdongnan Basin[J]. Haiyang Xuebao,2021, 43(3):48–61 doi: 10.12284/hyxb2021055

珠江口盆地−琼东南盆地深水区新生代构造沉积演化对比分析

doi: 10.12284/hyxb2021055
基金项目: 国家自然科学基金(41606065,41704085);广东省自然科学基金(2016A030310331);中国科学院边缘海地质重点实验室开放基金(MSGL15-02);广东海洋大学博士启动基金项目;广东海洋大学海洋科学科研团队项目(002026002004)
详细信息
    作者简介:

    谢辉(1987-),男,江西省抚州市人,博士,讲师,主要从事大陆边缘构造与盆地分析研究。E-mail:xiehuihaoba@163.com

    通讯作者:

    石红才(1984-),男,湖北省咸宁市人,博士,讲师,主要从事构造地质与地热学研究。E-mail:hcshi@scsio.ac.cn

  • 中图分类号: P736

Comparative study on the Cenozoic tectonic and sedimentary evolution in the deep water areas of the Zhujiang River Estuary Basin and the Qiongdongnan Basin

  • 摘要: 南海北部陆缘记录了南海形成演化的历史,但是其新生代构造沉积演化特征在东段和西段的差异及其原因目前还不太清楚。本文分别在珠江口盆地和琼东南盆地的深水区选择了数口构造地理位置相似的井通过精细地层回剥分析,重建了两沉积盆地的沉积速率和沉降速率并结合前人研究成果进行了对比分析。研究结果发现,两沉积盆地在裂陷期的沉积和沉降特征基本相似,但是两者在裂后期的构造沉积演化特征差异明显。珠江口盆地深水区沉积和沉降速率都表现为幕式变化特征,其中沉积速率表现为“两快三慢”的特征而沉降速率表现为“两快一慢”的特征。琼东南盆地深水区的沉积速率表现为“地堑式”变化特征,但是沉降速率表现为“台阶式”上升的变化特征。琼东南盆地“台阶式”上升的沉降速率推测主要是受到海南地幔柱伴随红河断裂的右旋走滑而向西北漂移的影响,这也与南海西北部的岩浆活动以及周围盆地的沉降特征吻合。红河断裂在2.1 Ma BP的右旋走滑控制了琼东南盆地1.8 Ma BP以来的快速沉积和加速沉降分布。
  • 图  1  琼东南盆地和珠江口盆地构造单元分布

    Fig.  1  Distribution of the structural units in the Qiongdongnan Basin and the Zhujiang River Estuary Basin

    图  2  艾里地壳均衡理论示意图

    Fig.  2  Sketch principle map of Airy theory of isostasy

    图  3  珠江口盆地(a)及琼东南盆地沉降史曲线(b)

    Fig.  3  The subsidence history curves of the Zhujiang River Estuary Basin (a) and the Qiongdongnan Basin (b)

    图  4  珠江口盆地(a)和琼东南盆地(b)沉降速率

    Fig.  4  The subsidence rates in the Zhujiang River Estuary Basin (a) and the Qiongdongnan Basin (b)

    图  5  珠江口盆地(a)及琼东南盆地(b)沉积速率

    Fig.  5  The sedimentation rates in the Zhujiang River Estuary Basin (a) and the Qiongdongnan Basin (b)

    图  6  珠江口盆地(a)和琼东南盆地(b)沉积速率与沉降速率对比

    Fig.  6  Comparative of the sedimentation rates and subsidence rates in the Zhujiang River Estuary Basin (a) and the Qiongdongnan Basin (b)

    表  1  珠江口盆地深水区钻井和模拟井构造位置分布

    Tab.  1  Tectonic locations of the drilling and simulation wells in the deep water area of the Zhujiang River Estuary Basin

    井名LW31Z1Z2Z3Z4Z5
    构造位置白云凹陷东南缘白云凹陷中心白云凹陷南部荔湾凹陷南部隆起西部南部隆起东部
    下载: 导出CSV

    表  2  琼东南盆地深水区钻井和模拟井构造位置分布表

    Tab.  2  Tectonic locations of the drilling and simulation wells in the deep water area of the Qiongdongnan Basin

    井名LS33LS22YC35Q1Q2Q3Q4Q5Q6
    构造位置陵南低
    凸起北部
    乐东−陵水
    凹陷东部
    乐东−陵水
    凹陷西部
    乐东−陵水
    凹陷东部
    陵南低
    凸起中部
    松南−宝岛
    凹陷
    长昌凹陷
    西缘
    北礁凸起长昌凹陷
    中心
    下载: 导出CSV

    表  3  琼东南盆地深水区L33井参数表(位置见图1[40, 47]

    Tab.  3  The data of L33 Well in the deep water area of the Qiongdongnan Basin (see the location in Fig.1)[40, 47]

    界面名称界面深度/m年龄/Ma地层名称最小古水深/m最大古水深/m沉积环境岩性编码
    海床表面 1 462.80乐山组1 462.81 462.8半深海1.57
    T202 214.51.8乐山组1 0001 200半深海1.57
    T282 491.53.2莺歌海组9001 100半深海1.65
    T302 6305.5莺歌海组8001 000半深海1.65
    T312 955.58.2黄流组700900外陆架和半深海1.67
    T403 15011.6黄流组050外陆架和半深海1.67
    T413 33113.4梅山组50200外陆架1.65
    T503 45016梅山组50200外陆架1.65
    T523 51918.3三亚组050陆表海1.65
    T603 60823三亚组020陆表海1.65
    T623 84425.5陵水组50200浅海1.67
    T704 00828.4陵水组050滨浅海1.67
    T714 04829.9崖城组050滨海1.57
    T804 24332崖城组030海陆交互1.57
    T1005 30045岭头组00湖泊1.5
    下载: 导出CSV

    表  4  珠江口盆地深水区L31井参数表(位置见图1[50]

    Tab.  4  The data of L31 Well in the deep water area of the Zhujiang River Estuary Basin (see the location in Fig.1)[50]

    界面名称界面深度/m年龄/Ma地层名称最小古水深/m最大古水深/m沉积环境岩性编码
    海床表面1 4800万山组1 4801 480深海2
    SB5.51 9866 万山组1 3901 450 深海2
    SB10.52 09411.9粤海组1 2901 420深海2
    SB12.52 20013.2韩江组1 2201 400深海2
    SB13.82 51914.3韩江组9501 150深海2
    SB15.52 66615.5韩江组8601 060深海2
    SB16.52 73016.3韩江组8401 040深海2
    SB17.52 79317.2珠江组700900深海2
    MFS18.52 88517.9珠江组8001 000深海2
    SB213 06419.8珠江组600800深海1.90
    SB23.83 11423.03珠江组020浅海陆架1.97
    ZHSB63 15624.4珠海组020滨浅海1.59
    ZHSB53 33026珠海组50200前三角洲1.71
    ZHSB43 50227珠海组50200前三角洲1.87
    ZHSB33 62327.8珠海组50100三角洲前缘1.69
    ZHSB23 72829珠海组050滨浅海1.74
    T703 97133恩平组050滨浅海1.96
    T804 41839神狐−文昌组030湖泊1.31
    Tg5 05266神狐−文昌组00湖泊1.38
    下载: 导出CSV

    表  5  珠江口盆地和琼东南盆地去压实参数表[23, 27]

    Tab.  5  The decompaction parameters of the Zhujiang River Estuary Basin and the Qiongdongnan Basin[23, 27]

    岩性珠江口盆地琼东南盆地
    骨架密度/(g·cm−2初始孔隙度/%压实系数/(10−3 m−1骨架密度/(g·cm−2初始孔隙度/%压实系数/(10−3 m−1
    泥岩2.72660.9322.72691.18
    砂岩2.65390.3032.65430.45
    下载: 导出CSV
  • [1] Holloway N H. North Palawan Block, Philippines: its relation to Asian mainland and role in evolution of South China Sea[J]. American Association of Petroleum Geologists Bulletin, 1982, 66: 1355−1383.
    [2] Briais A, Patriat P, Tapponnier P. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implication for the Tertiary tectonics of Southeast Asia[J]. Journal of Geophysical Research, 1993, 98: 6299−6328. doi: 10.1029/92JB02280
    [3] Brune S, Heine C, Perez-gussinye M, et al. Rift migration explains continental margin asymmetry and crustal hyper-extension[J]. Nature Communications, 2014, 5: 1−9.
    [4] Expedition 349 Scientists. Opening of the South China Sea and its implications for southeast Asian tectonics, climates, and deep mantle processes since the late Mesozoic[R]. International Ocean Discovery Program Preliminary Report, 2014, 349: 1−109.
    [5] Li C F, Xu X, Lin J, et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349[J]. Geochemistry, Geophysics, Geosystems, 2014, 15: 4958−4983. doi: 10.1002/2014GC005567
    [6] 解习农, 张成, 任建业, 等. 南海南北大陆边缘盆地构造演化差异性对油气成藏条件控制[J]. 地球物理学报, 2011, 54(12): 3280−3291. doi: 10.3969/j.issn.0001-5733.2011.12.026

    Xie Xinong, Zhang Cheng, Ren Jianye, et al. Effects of distinct tectonic evolutions on hydrocarbon accumulation in northern and southern continental marginal basins of South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3280−3291. doi: 10.3969/j.issn.0001-5733.2011.12.026
    [7] 解习农, 任建业, 王振峰, 等. 南海大陆边缘盆地构造演化差异性及其与南海扩张耦合关系[J]. 地学前缘, 2015, 22(1): 77−87.

    Xie Xinong, Ren Jianye, Wang Zhenfeng, et al. Difference of tectonic evolution of continental marginal basins of South China Sea and relationship with SCS spreading[J]. Earth Science Frontiers, 2015, 22(1): 77−87.
    [8] 任建业, 庞雄, 雷超, 等. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示[J]. 地学前缘, 2015, 22(1): 102−114.

    Ren Jianye, Pang Xiong, Lei Chao, et al. Ocean and continent transition in passive continental margins and analysis of lithospheric extension and breakup process: Implication for research of the deepwater basins in the continental margins of South China Sea[J]. Earth Science Frontiers, 2015, 22(1): 102−114.
    [9] 任建业, 庞雄, 于鹏, 等. 南海北部陆缘深水—超深水盆地成因机制分析[J]. 地球物理学报, 2018, 61(12): 4901−4920. doi: 10.6038/cjg2018L0558

    Ren Jianye, Pang Xiong, Yu Peng, et al. Characteristics and formation mechanism of deepwater and ultra-deepwater basins in the northern continental margin of the South China Sea[J]. Chinese Journal of Geophysics, 2018, 61(12): 4901−4920. doi: 10.6038/cjg2018L0558
    [10] 丘学林, 赵明辉, 敖威, 等. 南海西南次海盆与南沙地块的OBS探测和地壳结构[J]. 地球物理学报, 2011, 54(12): 3117−3128. doi: 10.3969/j.issn.0001-5733.2011.12.012

    Qiu Xuelin, Zhao Minghui, Ao Wei, et al. OBS survey and crustal structure of the Southwest Sub-basin and Nansha Block, South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3117−3128. doi: 10.3969/j.issn.0001-5733.2011.12.012
    [11] 李家彪, 丁巍伟, 吴自银, 等. 南海西南海盆的渐进式扩张[J]. 科学通报, 2012, 57(20): 1896−1905. doi: 10.1360/csb2012-57-20-1896

    Li Jiabiao, Ding Weiwei, Wu Ziyin, et al. The propagation of seafloor spreading in the southwestern subbasin, South China Sea[J]. Chinese Science Bulletin, 2012, 57(20): 1896−1905. doi: 10.1360/csb2012-57-20-1896
    [12] 孙珍, 刘思青, 庞雄, 等. 被动大陆边缘伸展–破裂过程研究进展[J]. 热带海洋学报, 2016, 35(1): 1−16. doi: 10.11978/2015030

    Sun Zhen, Liu Siqing, Pang Xiong, et al. Recent research progress on the rifting-breakup process in passive continental margins[J]. Journal of Tropical Oceanography, 2016, 35(1): 1−16. doi: 10.11978/2015030
    [13] Nissen S S, Hayes D E, Buhl P, et al. Deep penetration seismic soundings across the northern margin of the South China Sea[J]. Journal of Geophysical Research, 1995, 100: 22407−22433. doi: 10.1029/95JB01866
    [14] Qiu X L, Ye S Y, Wu S M, et al. Crustal structure across the Xisha Trough, northwestern South China Sea[J]. Tectonophysics, 2001, 341(1/4): 179−193.
    [15] 张功成, 刘震, 米立军, 等. 珠江口盆地−琼东南盆地深水区古近系沉积演化[J]. 沉积学报, 2009, 27(4): 632−641.

    Zhang Gongcheng, Liu Zhen, Mi Lijun, et al. Sedimentary evolution of Paleogene series in deep water area of Zhujiangkou and Qiongdongnan Basin[J]. Acta Sedimentologica Sinica, 2009, 27(4): 632−641.
    [16] 宋洋, 赵长煜, 张功成, 等. 南海北部珠江口与琼东南盆地构造−热模拟研究[J]. 地球物理学报, 2011, 54(12): 3057−3069. doi: 10.3969/j.issn.0001-5733.2011.12.007

    Song Yang, Zhao Changyu, Zhang Gongcheng, et al. Research on tectono-thermal modeling for Qiongdongnan Basin and Pearl River Mouth Basin in the northern South China Sea[J]. Chinese Journal of Geophysics, 2011, 54(12): 3057−3069. doi: 10.3969/j.issn.0001-5733.2011.12.007
    [17] Xia Z, Wan Z, Wang X, et al. The tectonic differences between the east and the west in the deep-water area of the northern South China Sea[J]. Acta Oceanologica Sinica, 2016, 35(1): 86−95. doi: 10.1007/s13131-016-0799-8
    [18] Sun Z, Ding W, Zhao X, et al. The latest spreading periods of the South China Sea: New constraints from macrostructure analysis of IODP Expedition 349 cores and geophysical data[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(10): 9980−9998. doi: 10.1029/2019JB017584
    [19] Ding W W, Sun Z, Geoffroy M, et al. Lateral evolution of the rift-to-drift transition in the South China Sea: Evidence from multi-channel seismic data and IODP Expeditions 367&368 drilling results[J]. Earth and Planetary Science Letters, 2020, 531: 115932. doi: 10.1016/j.jpgl.2019.115932
    [20] 董冬冬, 王大伟, 张功成, 等. 珠江口盆地深水区新生代构造沉积演化[J]. 中国石油大学学报(自然科学版), 2009, 33(5): 17−22.

    Dong Dongdong, Wang Dawei, Zhang Gongcheng, et al. Cenozoic tectonic and sedimentary evolution of deepwater area, Pearl River Mouth Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2009, 33(5): 17−22.
    [21] Zhou D, Sun Z, Liao J, et al. Filling history and post-breakup acceleration of sedimentation in Baiyun Sag, deepwater northern South China Sea[J]. Journal of Earth Science, 2009, 20(1): 160−171. doi: 10.1007/s12583-009-0015-2
    [22] He M, Zhong G, Liu X, et al. Rapid post-rift tectonic subsidence events in the Pearl River Mouth Basin, northern South China Sea margin[J]. Journal of Asian Earth Sciences, 2017, 147: 271−283. doi: 10.1016/j.jseaes.2017.07.024
    [23] Xie H, Zhou D, Pang X, et al. Cenozoic sedimentary evolution of deepwater sags in the Pearl River Mouth Basin, northern South China Sea[J]. Marine Geophysical Research, 2013, 34(3/4): 159−173.
    [24] Xie H, Zhou D, Li Y, et al. Cenozoic tectonic subsidence in deepwater sags in the Pearl River Mouth Basin, northern South China Sea[J]. Tectonophysics, 2014, 615−616: 182−198. doi: 10.1016/j.tecto.2014.01.010
    [25] Shi X B, Burov E, Leroy S, et al. Intrusion and its implication for subsidence: A case from the Baiyun Sag, on the northern margin of the South China Sea[J]. Tectonophysics, 2005, 407(1/2): 117−134.
    [26] Clift P, Sun Z. The sedimentary and tectonic evolution of the Yinggehai-Song Hong basin and the southern Hainan margin, South China Sea: Implications for Tibetan uplift and monsoon intensification[J]. Journal of Geophysical Research, 2006, 111(B6): 1−28.
    [27] Zhao Z, Sun Z, Wang Z, et al. The high resolution sedimentary filling in Qiongdongnan Basin, Northern South China Sea[J]. Marine Geology, 2015, 361: 11−24. doi: 10.1016/j.margeo.2015.01.002
    [28] Zhao Z, Sun Z, Sun L, et al. Cenozoic tectonic subsidence in the Qiongdongnan Basin, northern South China Sea[J]. Basin Research, 2018, 30: 269−288. doi: 10.1111/bre.12220
    [29] Xie X N, Müller R D, Li S, et al. Origin of anomalous subsidence along the Northern South China Sea margin and its relationship to dynamic topography[J]. Marine and Petroleum Geology, 2006, 23(7): 745−765. doi: 10.1016/j.marpetgeo.2006.03.004
    [30] Shi X B, Jiang H, Yang J, et al. Models of the rapid post-rift subsidence in the eastern Qiongdongnan Basin, South China Sea: Implications for the development of the deep thermal anomaly[J]. Basin Research, 2017, 29(3): 340−362. doi: 10.1111/bre.12179
    [31] Lebedev S, Nolet G. Upper mantle beneath Southeast Asia from S velocity tomography[J]. Journal of Geophysical Research, 2003, 08(B1): 20−48.
    [32] 徐义刚, 魏静娴, 邱华宁, 等. 用火山岩制约南海的形成演化: 初步认识与研究设想[J]. 科学通报, 2012, 57(20): 1863−1878. doi: 10.1360/csb2012-57-20-1863

    Xu Yigang, Wei Jingxian, Qiu Huaning, et al. Opening and evolution of the South China Sea constrained by studies on volcanic rocks: Preliminary results and a research design[J]. Chinese Science Bulletin, 2012, 57(20): 1863−1878. doi: 10.1360/csb2012-57-20-1863
    [33] Xia S, Zhao D, Sun J, et al. Teleseismic imaging of the mantle beneath southernmost China: new insights into the Hainan Plume[J]. Gondwana Research, 2016, 36: 46−56. doi: 10.1016/j.gr.2016.05.003
    [34] Zhou D, Ru K, Chen H, et al. Kinematics of Cenozoic extension on the South China Sea continental margin and its implications for the tectonic evolution of the region[J]. Tectonophysics, 1995, 251: 161−177. doi: 10.1016/0040-1951(95)00018-6
    [35] 庞雄, 陈长民, 吴梦霜, 等. 珠江深水扇系统沉积和周边重要地质事件[J]. 地球科学进展, 2006, 21(8): 793−799. doi: 10.3321/j.issn:1001-8166.2006.08.003

    Pang Xiong, Chen Changmin, Wu Mengshuang, et al. The Pearl River deep-water fan systems and significant geological event[J]. Advances in Earth Science, 2006, 21(8): 793−799. doi: 10.3321/j.issn:1001-8166.2006.08.003
    [36] 庞雄, 陈长民, 邵磊, 等. 白云运动: 南海北部渐新统−中新统重大地质事件及其意义[J]. 地质论评, 2007, 53(2): 145−151. doi: 10.3321/j.issn:0371-5736.2007.02.001

    Pang Xiong, Chen Changmin, Shao Lei, et al. Baiyun Movement, a great tectonic event on the Oligocene-Miocene boundary in the northern South China Sea and its implications[J]. Geological Review, 2007, 53(2): 145−151. doi: 10.3321/j.issn:0371-5736.2007.02.001
    [37] 邵磊, 雷永昌, 庞雄, 等. 珠江口盆地构造演化及对沉积环境的控制作用[J]. 同济大学学报(自然科学版), 2005, 33(9): 1177−1181. doi: 10.3321/j.issn:0253-374X.2005.09.007

    Shao Lei, Lei Yongchang, Pang Xiong, et al. Tectonic evolution and its controlling for sedimentary environment in Pearl River Mouth Basin[J]. Journal of Tongji University (Natural Science), 2005, 33(9): 1177−1181. doi: 10.3321/j.issn:0253-374X.2005.09.007
    [38] 邵磊, 庞雄, 乔培军, 等. 珠江口盆地的沉积充填与珠江的形成演变[J]. 沉积学报, 2008, 26(2): 179−185.

    Shao Lei, Pang Xiong, Qiao Peijun, et al. Sedimentary filling of the Pearl River Mouth Basin and its response to the evolution of the Pearl River[J]. Acta Sedimentologica Sinica, 2008, 26(2): 179−185.
    [39] 雷超. 南海北部莺歌海−琼东南盆地新生代构造变形格局及其演化过程分析[D]. 武汉: 中国地质大学, 2012.

    Lei Chao. Structure and evolution of Yinggehai and Qiongdongnan basins, South China Sea: Implications for Cenozoic tectonics in Southeast Asia[D]. Wuhan: China University of Geosciences, 2012.
    [40] 杜同军. 琼东南盆地层序地层和深水区沉积充填特征[D]. 青岛: 中国海洋大学, 2013.

    Du Tongjun. Sequence stratigraphic and deep water sedimentary characteristic in the Qiongdongnan Basin[D]. Qingdao: Ocean University of China, 2013.
    [41] 李平鲁. 珠江口盆地新生代构造运动[J]. 中国海上油气, 1993, 7(6): 11−17.

    Li Pinglu. Cenozoic tectonic movement in the Pearl River Mouth Basin[J]. China Offshore Oil and Gas, 1993, 7(6): 11−17.
    [42] Watts A B, Ryan W B F. Flexure of the lithosphere and continental margin basins[J]. Tectonophysics, 1976, 36(1/3): 25−44.
    [43] Steckler M S, Watts A B. Subsidence of the Atlantictype continental margin off New York[J]. Earth and Planetary Science Letters, 1978, 41: 1−13. doi: 10.1016/0012-821X(78)90036-5
    [44] Sclater J G, Christie P A F. Continental stretching: an explanation of the post-mid-Cretaceous subsidence of the central North Sea Basin[J]. Journal of Geophysical Research, 1980, 85(B7): 3711−3739. doi: 10.1029/JB085iB07p03711
    [45] 谢辉, 周蒂, 陈广浩, 等. 盆地沉降史回剥分析的不确定性及参数影响[J]. 热带海洋学报, 2014, 33(5): 50−59. doi: 10.3969/j.issn.1009-5470.2014.05.007

    Xie Hui, Zhou Di, Chen Guanghao, et al. Uncertainty and parameterization in backstripping of basin subsidence analysis[J]. Journal of Tropical Oceanography, 2014, 33(5): 50−59. doi: 10.3969/j.issn.1009-5470.2014.05.007
    [46] 袁玉松, 杨树春, 胡圣标, 等. 琼东南盆地构造沉降史及其主控因素[J]. 地球物理学报, 2008, 51(2): 376−383. doi: 10.3321/j.issn:0001-5733.2008.02.010

    Yuan Yusong, Yang Shuchun, Hu Shengbiao, et al. Tectonic subsidence of Qiongdongnan Basin and its main control factors[J]. Chinese Journal of Geophysics, 2008, 51(2): 376−383. doi: 10.3321/j.issn:0001-5733.2008.02.010
    [47] 李娜. 琼东南盆地深水区渐新世以来沉积古环境及物源分析[D]. 青岛: 中国海洋大学, 2013.

    Li Na. The sedimentary paleoenvironment and provenance analysis in the deepwater area of Qiongdongnan Basin since Oligocene[D]. Qingdao: Ocean University of China, 2013.
    [48] 刘晓峰. 琼东南盆地深水区沉积古环境和物源演化[D]. 青岛: 中国海洋大学, 2015.

    Liu Xiaofeng. The evolution of sedimentary paleoenvironment and provenance in the deepwater area of the Qiongdongnan Basin[D]. Qingdao: Ocean University of China, 2015.
    [49] 苏明, 解习农, 姜涛, 等. 琼东南盆地裂后期S40界面特征及其地质意义[J]. 地球科学——中国地质大学学报, 2011, 36(5): 886−894.

    Su Ming, Xie Xinong, Jiang Tao, et al. Characteristics of S40 boundary and its significance in Qiongdongnan Basin, northern continental margin of South China Sea[J]. Earth Science—Journal of China University of Geosciences, 2011, 36(5): 886−894.
    [50] 谢辉. 珠江口盆地白云深水区沉降史分析及其构造涵义[D]. 广州: 中国科学院南海海洋研究所, 2014.

    Xie Hui. The Cenozoic subsidence history and its implications of the deepwater sags in the Pearl River Mouth Basin[D]. Guangzhou: South China Sea Institute of Oceanology, Chinese Academy of Sciences, 2014.
    [51] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic[J]. Science, 1987, 235(4793): 1156−1167. doi: 10.1126/science.235.4793.1156
    [52] Clift P, Lin J, Barckhausen U. Evidence of low flexural rigidity and low viscosity lower continental crust during continental break-up in the South China Sea[J]. Marine and Petroleum Geology, 2002, 19(8): 951−970. doi: 10.1016/S0264-8172(02)00108-3
    [53] Sun Z, Zhao Z, Zhou D, Pang X, et al. Dynamics analysis of the Baiyun Sag in the Pearl River Mouth Basin, north of the South China Sea[J]. Acta Oceanologica Sinica, 2008, 82(1): 73−83.
    [54] Clift P, Wan S M, Blusztajn J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies[J]. Earth-Science Reviews, 2014, 130: 86−102. doi: 10.1016/j.earscirev.2014.01.002
    [55] 李亚敏, 施小斌, 徐辉龙, 等. 琼东南盆地构造沉降的时空分布及裂后期异常沉降机制[J]. 吉林大学学报(地球科学版), 2012, 42(1): 47−57.

    Li Yamin, Shi Xiaobin, Xu Huilong, et al. Temporal and spatial distribution of tectonic subsidence and discussion on formation mechanism of anomalous post-rift tectonic subsidence in the Qiongdongnan Basin[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(1): 47−57.
    [56] 杨军, 施小斌, 王振峰, 等. 琼东南盆地张裂期沉降亏损与裂后期快速沉降成因[J]. 海洋地质与第四纪地质, 2015, 35(1): 81−90.

    Yang Jun, Shi Xiaobin, Wang Zhenfeng, et al. Origin of syn-rift subsidence deficit and rapid post-rift subsidence in Qiongdongnan Basin[J]. Marine Geology & Quaternary Geology, 2015, 35(1): 81−90.
    [57] Clift P. Coupled onshore erosion and offshore sediment loading as causes of lower crust flow on the margins of SCS[J]. Geoscience Letters, 2015, 2(1): 13−23. doi: 10.1186/s40562-015-0029-9
    [58] 丘学林, 周蒂, 夏戡原, 等. 南海西沙海槽地壳结构的海底地震仪探测与研究[J]. 热带海洋学报, 2000, 19(2): 9−18. doi: 10.3969/j.issn.1009-5470.2000.02.002

    Qiu Xuelin, Zhou Di, Xia Kanyuan, et al. OBH experiment and crustal structure of Xisha Trough, South China Sea[J]. Journal of Tropical Oceanography, 2000, 19(2): 9−18. doi: 10.3969/j.issn.1009-5470.2000.02.002
    [59] 孙珍, 钟志洪, 周蒂. 莺歌海盆地构造演化与强烈沉降机制的分析和模拟[J]. 地球科学——中国地质大学学报, 2007, 32(3): 347−356.

    Sun Zhen, Zhong Zhihong, Zhou Di. The analysis and analogue modeling of the tectonic evolution and strong subsidence in the Yinggehai Basin[J]. Earth Science—Journal of China University of Geosciences, 2007, 32(3): 347−356.
    [60] 陈梅, 施小斌, 任自强, 等. 南海西北部沉积盆地晚新生代沉降、沉积特征: 对深部异常过程的响应[J]. 地球物理学报, 2019, 62(2): 587−603. doi: 10.6038/cjg2019L0757

    Chen Mei, Shi Xiaobin, Ren Ziqiang, et al. Late Cenozoic subsidence and sedimentary features of the basins in the northwestern South China Sea: implications for the development of the deep anomalous progress[J]. Chinese Journal of Geophysics, 2019, 62(2): 587−603. doi: 10.6038/cjg2019L0757
    [61] 丁望. 南海扩张期后西北缘岩浆—构造活动解析[D]. 北京: 中国地质大学, 2017.

    Ding Wang. Approachto magmatic and tectonic activities in post-spreading stage of the South China Sea by analyzing relics from its northern and western margins[D]. Beijing: China University of Geosciences, 2017.
    [62] 冯英辞, 詹文欢, 孙杰, 等. 西沙海域上新世以来火山特征及其形成机制[J]. 热带海洋学报, 2017, 36(3): 73−79.

    Feng Yingci, Zhan Wenhuan, Sun Jie, et al. The formation mechanism and characteristics of volcanoes in the Xisha waters since Pliocene[J]. Journal of Tropical Oceanography, 2017, 36(3): 73−79.
    [63] 张峤. 南海北部陆缘新生代岩浆活动及构造意义[D]. 青岛: 中国科学院青岛海洋研究所, 2014.

    Zhang Qiao. Cenozoic magmatism in the northern continental margin of the South China Sea and its implication for the tectonic evolution of the rifted margin[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2014.
    [64] 鄢全树. 南海新生代碱性玄武岩的特征及其地球动力学意义[D]. 青岛: 中国科学院青岛海洋研究所, 2008.

    Yan Quanshu. Geochemistry of Cenozoic alkali basalts from the South China Sea and its geodynamical significance[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2008.
    [65] 王贤觉, 吴明清, 梁德华, 等. 南海玄武岩的某些地球化学特征[J]. 地球化学, 1984, 13(4): 332−340. doi: 10.3321/j.issn:0379-1726.1984.04.005

    Wang Xianjue, Wu Mingqing, Liang Dehua, et al. Some geochemical characteristics of basalts in the South China Sea[J]. Geochimica, 1984, 13(4): 332−340. doi: 10.3321/j.issn:0379-1726.1984.04.005
    [66] 刘昭蜀, 赵焕庭, 范时清, 等. 南海地质[M]. 北京: 科学出版社, 2002.

    Liu Zhaoshu, Zhao Huanting, Fan Shiqing, et al. Geology of the South China Sea[M]. Beijing: Science Press, 2002.
    [67] Zou H, Fan Q. U–Th isotopes in Hainan basalts: Implications for sub-asthenospheric origin of EM2 mantle end member and the dynamics of melting beneath Hainan Island[J]. Lithos, 2010, 116(1/2): 145−152.
    [68] 向宏发, 万景林, 韩竹军, 等. 红河断裂带大型右旋走滑运动发生时代的地质分析与ft测年[J]. 中国科学D辑: 地球科学, 2006, 36(11): 977−987.

    Xiang Hongfa, Wan Jinglin, Han Zhujun, et al. Geological analysis and FT dating of the large-scale right-lateral strike-slip movement of the Red River Fault Zone[J]. Science China: Earth Sciences, 2006, 36(11): 977−987.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  898
  • HTML全文浏览量:  262
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-01
  • 修回日期:  2020-01-01
  • 网络出版日期:  2021-03-13
  • 刊出日期:  2021-04-23

目录

    /

    返回文章
    返回