留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于船载无人机的绿潮漂移速度估算与分析

姜晓鹏 高志强 吴晓青 王跃启 宁吉才

姜晓鹏,高志强,吴晓青,等. 基于船载无人机的绿潮漂移速度估算与分析[J]. 海洋学报,2021,43(4):96–105 doi: 10.12284/hyxb2021054
引用本文: 姜晓鹏,高志强,吴晓青,等. 基于船载无人机的绿潮漂移速度估算与分析[J]. 海洋学报,2021,43(4):96–105 doi: 10.12284/hyxb2021054
Jiang Xiaopeng,Gao Zhiqiang,Wu Xiaoqing, et al. Estimation and analysis of the green-tide drift velocity using ship-borne UAV[J]. Haiyang Xuebao,2021, 43(4):96–105 doi: 10.12284/hyxb2021054
Citation: Jiang Xiaopeng,Gao Zhiqiang,Wu Xiaoqing, et al. Estimation and analysis of the green-tide drift velocity using ship-borne UAV[J]. Haiyang Xuebao,2021, 43(4):96–105 doi: 10.12284/hyxb2021054

基于船载无人机的绿潮漂移速度估算与分析

doi: 10.12284/hyxb2021054
基金项目: 国家自然科学基金(41876107);国家重点研发计划“蓝色粮仓科技创新”项目(2019YFD0900705);山东省联合基金(U1706219);中国科学院海洋大科学研究中心重点部署项目(COMS2019J02);中国科学院前沿科学重点研究计划(ZDBS-LY-7010);中国科学院海洋生态与环境科学重点实验室开放基金(KLMEES202005);山东省海岸带环境过程重点实验室(中国科学院烟台海岸带研究所)开放基金(2019SDHADKFJJ07)。
详细信息
    作者简介:

    姜晓鹏(1986-),男,山东省威海市人,博士研究生,研究方向为环境遥感与GIS开发。E-mail:xpjiang@yic.ac.cn

    通讯作者:

    高志强,博士生导师,研究员,研究方向为海岸带信息集成及定量遥感。E-mail:zqgao@yic.ac.cn

  • 中图分类号: X87

Estimation and analysis of the green-tide drift velocity using ship-borne UAV

  • 摘要: 无人机遥感具有应用灵活、不受云层干扰以及时空分辨率高的显著优势。为探索无人机在海洋灾害监测中的应用,本文以科考船为起降平台,首次基于无人机获取的双时相绿潮正射影像,开展了黄海绿潮漂移速度的估算研究。同时对比了卫星影像提取的速度结果,并探讨了风与潮流对海上绿潮漂移的驱动。研究发现:(1)可见光波段的漂浮藻类指数能高精度地提取无人机可见光影像中的绿潮(kappa 系数=0.95);(2)无人机遥感估算3个站位的绿潮漂移速率为0.26~0.44 m/s,漂移方向在1天之内变化明显;(3)绿潮短时间内的漂移受到风与潮流的共同影响,漂移方向与M2分潮的潮流方向基本一致,位于风向右侧1°~62°。基于船载的无人机航测,能高精度地估算绿潮漂移速度,为精细化的绿潮灾害预警与防控提供技术支撑。
  • 图  1  航拍站点、验潮站及研究区示意图

    Fig.  1  Map of aerial photography sites, tide station and study area

    图  2  船载无人机获取绿潮正射影像示意图

    Fig.  2  Green-tidal orthophoto taken by ship-borne unmanned aerial vehicle (UAV)

    图  3  3个站点作业期间的1 min平均风速矢量

    2条红色竖线间为选取的有效风时段,2个绿色标签点之间表示该站点航拍的绿潮漂移时段

    Fig.  3  The 1-minute average wind data of three sites during operation

    The selected effective wind period is between two red vertical lines, and two green label points represent the green-tide drift period photographed by UAV

    图  4  绿潮提取步骤

    a. 生成数字正射影像;b. 计算RGB-FAI;c. 应用阈值分割法提取绿潮,并使用随机点进行精度评价

    Fig.  4  Steps of extracting green-tide

    a. Generating digital orthophoto image; b. calculating RGB-FAI; c. extracting green-tide by threshold segmentation, and using the random points for accuracy evaluation

    图  5  3个站点的绿潮斑块漂移图

    点状符号表示各子斑块的中心点

    Fig.  5  The green-tide drifting map of three sites

    The dot symbols in the graph represent the center of different sub patches

    图  6  3个站点航拍作业时的潮位

    Fig.  6  Tidal height during aerial photography of three sites

    图  7  绿潮、风、潮流的移动矢量图

    a、c、e分别为S1、S2、S3站点风与绿潮漂移的矢量图,红色箭头为风矢量,绿色箭头为绿潮漂移矢量;b、d分别为南黄海6月表层低潮时、落潮中间时的流场分布(改绘自文献[29]),红点标识了3个站点的位置

    Fig.  7  Motion vector of green-tide, wind and tidal current

    a, c, e are vector diagrams of wind and green-tide drift at sites S1, S2 and S3, respectively, with red arrow as the wind vector and green arrow as the green-tide drifting vector; b, d are the tidal current field of the low tide and the middle of ebb in surface of the southern Yellow Sea in June (modified from reference [29]), where the red dots indicate the positions of three sites

    图  8  基于GOCI影像的绿潮逐时漂移图

    Fig.  8  The one-hour drifting map of green-tide from GOCI images

    表  1  绿潮提取误差矩阵表

    Tab.  1  Error matrix of green-tide extraction

    海水绿藻行总和用户精度/%
    海水6921770997.60
    绿藻428629098.62
    列总和696303999
    生产者精度/%99.4394.39
    下载: 导出CSV

    表  2  绿潮斑块漂移速度与风速的统计

    Tab.  2  Statistics of green-tide drifting velocity and the corresponding wind velocity

    站点站点坐标航拍日期航拍时段漂移速率/(m·s−1)漂移方向*/(°)有效风时段风速均值/(m·s−1)风向均值*/(°)
    S136°N, 121°E2019年6月19日13:04−13:120.25717.113:03−13:133.17139.7
    S236°N, 121.5°E2019年6月19日09:36−10:060.43969.009:29−10:013.23186.9
    S335°N, 121°E2019年6月16日07:55−08:030.256136.507:48−07:581.75315.7
      注:*方向以正北向为0°,顺时针为正。
    下载: 导出CSV

    表  3  基于UAV和GOCI影像的绿潮漂移速度提取结果的对比

    Tab.  3  Comparison of green-tide drifting velocity derived from UAV and GOCI images

    无人机遥感GOCI卫星遥感偏差*
    影像分辨率/m0.14500
    漂移方向(北偏东)/(°)69.058.42.9%
    漂移速率/(m·s−1)0.4390.5470.108
      注:*方向偏差=∣测定值−基准值∣/360°×100%;速率偏差=∣测定值−基准值∣。
    下载: 导出CSV
  • [1] Liu Dongyan, Keesing J K, He Peimin, et al. The world’s largest macroalgal bloom in the Yellow Sea, China: formation and implications[J]. Estuarine, Coastal and Shelf Science, 2013, 129: 2−10. doi: 10.1016/j.ecss.2013.05.021
    [2] 于仁成, 孙松, 颜天, 等. 黄海绿潮研究: 回顾与展望[J]. 海洋与湖沼, 2018, 49(5): 942−949. doi: 10.11693/hyhz20180700158

    Yu Rencheng, Sun Song, Yan Tian, et al. Progresses and perspectives on green-tide studies in the Yellow Sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(5): 942−949. doi: 10.11693/hyhz20180700158
    [3] 于仁成, 刘东艳. 我国近海藻华灾害现状、演变趋势与应对策略[J]. 中国科学院院刊, 2016, 31(10): 1167−1174.

    Yu Rencheng, Liu Dongyan. Harmful algal blooms in the coastal waters of China: current situation, long-term changes and prevention strategies[J]. Bulletin of the Chinese Academy of Sciences, 2016, 31(10): 1167−1174.
    [4] Wang Zongling, Xiao Jie, Fan Shiliang, et al. Who made the world's largest green tide in China?—an integrated study on the initiation and early development of the green tide in Yellow Sea: Green tide in Yellow Sea of China[J]. Limnology & Oceanography, 2015, 60(4): 1105−1117.
    [5] 颜天, 于仁成, 周名江, 等. 黄海海域大规模绿潮成因与应对策略——“鳌山计划”研究进展[J]. 海洋与湖沼, 2018, 49(5): 950−958. doi: 10.11693/hyhz20180700156

    Yan Tian, Yu Rencheng, Zhou Mingjiang, et al. Mechanism of massive formation and prevention strategy against large-scale green tides in the south Yellow Sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(5): 950−958. doi: 10.11693/hyhz20180700156
    [6] 刘材材, 徐韧, 何培民, 等. 南黄海绿潮暴发与紫菜养殖的关系[J]. 海洋科学, 2017, 41(2): 35−43. doi: 10.11759/hykx20141122001

    Liu Caicai, Xu Ren, He Peimin, et al. Research on the relations between green tide and Porphyra cultivation in the south Yellow Sea[J]. Marine Sciences, 2017, 41(2): 35−43. doi: 10.11759/hykx20141122001
    [7] 张清春, 孔凡洲, 颜天, 等. 苏北浅滩养殖筏架附生绿藻入海过程在黄海绿潮形成中的作用[J]. 海洋与湖沼, 2018, 49(5): 1014−1020. doi: 10.11693/hyhz20180400076

    Zhang Qingchun, Kong Fanzhou, Yan Tian, et al. Green algae detached from aquaculture rafts into seawater resulted in green tide occurrence in the Yellow Sea[J]. Oceanologia et Limnologia Sinica, 2018, 49(5): 1014−1020. doi: 10.11693/hyhz20180400076
    [8] Liu Dongyan, Keesing J K, Dong Zhijun, et al. Recurrence of the world’s largest green-tide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms[J]. Marine Pollution Bulletin, 2010, 60(9): 1423−1432. doi: 10.1016/j.marpolbul.2010.05.015
    [9] Bao Min, Guan Weibing, Yang Yang, et al. Drifting trajectories of green algae in the western Yellow Sea during the spring and summer of 2012[J]. Estuarine, Coastal and Shelf Science, 2015, 163: 9−16. doi: 10.1016/j.ecss.2015.02.009
    [10] 王宗灵, 傅明珠, 肖洁, 等. 黄海浒苔绿潮研究进展[J]. 海洋学报, 2018, 40(2): 1−13.

    Wang Zongling, Fu Mingzhu, Xiao Jie, et al. Progress on the study of the Yellow Sea green tides caused by Ulva prolifera[J]. Haiyang Xuebao, 2018, 40(2): 1−13.
    [11] 衣立, 张苏平, 殷玉齐. 2009年黄海绿潮浒苔爆发与漂移的水文气象环境[J]. 中国海洋大学学报, 2010, 40(10): 15−23.

    Yi Li, Zhang Suping, Yin Yuqi. Influnce of environmental hydro-meteorological conditions to enteromorpha prolifera blooms in Yellow Sea, 2009[J]. Periodical of Ocean University of China, 2010, 40(10): 15−23.
    [12] 夏深圳. 基于遥感的黄海浒苔漂移速度与驱动机制研究[D]. 南京: 南京大学, 2016.

    Xia Shenzhen. Distribution and driving mechanism of the drift velocity of Ulva prolifera in the Yellow Sea based on remote sensing[D]. Nanjing: Nanjing University, 2016.
    [13] 陈晓英, 张杰, 崔廷伟, 等. 基于高分四号卫星的黄海绿潮漂移速度提取研究[J]. 海洋学报, 2018, 40(1): 29−38.

    Chen Xiaoying, Zhang Jie, Cui Tingwei, et al. Extraction of the green tide drift velocity in the Yellow Sea based on GF-4[J]. Haiyang Xuebao, 2018, 40(1): 29−38.
    [14] 钟山, 丁一, 李振, 等. MODIS浒苔遥感监测误差分析研究[J]. 遥感信息, 2013, 28(1): 38−42. doi: 10.3969/j.issn.1000-3177.2013.01.009

    Zhong Shan, Ding Yi, Li Zhen, et al. Error analysis on enteromorpha prolifera monitoring using MODIS data[J]. Remote Sensing Information, 2013, 28(1): 38−42. doi: 10.3969/j.issn.1000-3177.2013.01.009
    [15] 王法景, 盛辉, 苏婧, 等. 基于GOCI数据的绿潮覆盖面积精细化提取方法[J]. 测绘地理信息, 2018, 43(5): 24−27.

    Wang Fajing, Sheng Hui, Su Jing, et al. Refined extraction method for green tide coverage area based on GOCI data[J]. Journal of Geomatics, 2018, 43(5): 24−27.
    [16] 李佳琦, 李家国, 朱利, 等. 太原市黑臭水体遥感识别与地面验证[J]. 遥感学报, 2019, 23(4): 773−784.

    Li Jiaqi, Li Jiaguo, Zhu Li, et al. Remote sensing identification and validation of urban black and odorous water in Taiyuan City[J]. Journal of Remote Seinsing, 2019, 23(4): 773−784.
    [17] Wang Shengke, Liu Lu, Qu Liang, et al. Accurate Ulva prolifera regions extraction of UAV images with superpixel and CNNs for ocean environment monitoring[J]. Neurocomputing, 2019, 348: 158−168. doi: 10.1016/j.neucom.2018.06.088
    [18] Jiang Xiaopeng, Gao Zhiqiang, Zhang Qingchun, et al. Remote sensing methods for biomass estimation of green algae attached to nursery-nets and raft rope[J]. Marine Pollution Bulletin, 2020, 150: 110678. doi: 10.1016/j.marpolbul.2019.110678
    [19] Jiang Xiaopeng, Gao Meng, Gao Zhiqiang. A novel index to detect green-tide using UAV-based RGB imagery[J]. Estuarine, Coastal and Shelf Science, 2020, 245: 106943. doi: 10.1016/j.ecss.2020.106943
    [20] 魏传杰. 南黄海水文环境季节变化与湍流混合研究[D]. 青岛: 中国科学院海洋研究所, 2018.

    Wei Chuanjie. Seasonal variability of hydrological properties and turbulent mixing in southern Yellow Sea[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2018.
    [21] 张正龙. 我国黄、东海浒苔和马尾藻的遥感鉴别及绿潮发生过程研究[D]. 上海: 华东师范大学, 2014.

    Zhang Zhenglong. Remote sensing identification of Ulva prolifra and Sargassum and evolution of green tide in the Yellow Sea and the East China Sea[D]. Shanghai: East China Normal University, 2014.
    [22] 万剑华, 王朝, 刘善伟, 等. 消费级无人机的大比例尺测图能力分析[J]. 测绘通报, 2018(6): 104−108.

    Wan Jianhua, Wang Zhao, Liu Shanwei, et al. Analysis of large scale mapping capability of consumer unmanned aerial vehicles[J]. Bulletin of Surveying and Mapping, 2018(6): 104−108.
    [23] Fairman H S, Brill M H, Hemmendinger H. How the CIE 1931 color-matching functions were derived from Wright-Guild data[J]. Color Research & Application, 1997, 22(1): 11−23.
    [24] Ryu J H, Han H J, Cho S, et al. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS)[J]. Ocean Science Journal, 2012, 47(3): 223−233. doi: 10.1007/s12601-012-0024-4
    [25] 蔡晓晴. 基于静止轨道海洋水色卫星数据的绿潮遥感探测方法和逐时变化特征研究[D]. 青岛: 中国海洋大学, 2014.

    Cai Xiaoqing. Remote sensing detection and diurnal variation research of green macro-algae bloom by geostationary ocean color imager[D]. Qingdao: Ocean University of China, 2014.
    [26] 宋德彬, 高志强, 徐福祥, 等. 基于GOCI的2017年南黄海浒苔演变遥感分析[J]. 海洋与湖沼, 2018, 49(5): 1068−1074. doi: 10.11693/hyhz20171200330

    Song Debin, Gao Zhiqiang, Xu Fuxiang, et al. Spatial and temporal variability of the green tide in the south Yellow Sea in 2017 deciphered from the GOCI image[J]. Oceanologia et Limnologia Sinica, 2018, 49(5): 1068−1074. doi: 10.11693/hyhz20171200330
    [27] Rosenfield G H, Fitzpatrick-Lins K. A coefficient of agreement as a measure of thematic classification accuracy[J]. Photogrammetric Engineering and Remote Sensing, 1986, 52(2): 223−227.
    [28] Son Y B, Choi B J, Kim Y H, et al. Tracing floating green algae blooms in the Yellow Sea and the East China Sea using GOCI satellite data and lagrangian transport simulations[J]. Remote Sensing of Environment, 2015, 156: 21−33. doi: 10.1016/j.rse.2014.09.024
    [29] 于晓杰. 南黄海西部夏季环流及其对浒苔漂移影响的数值研究[D]. 青岛: 中国海洋大学, 2011.

    Yu Xiaojie. Numerical study about circulation in summer and its impact on the drift of enteromorpha prolifera in the western part of south Yellow Sea[D]. Qingdao: Ocean Univerisity of China, 2011.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  391
  • HTML全文浏览量:  87
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-27
  • 修回日期:  2020-12-08
  • 网络出版日期:  2021-03-24
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回