留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

河口及近岸海域底边界层生物地球化学过程研究进展

于志刚 姚鹏 甄毓 姚庆祯 米铁柱 陈洪涛

于志刚, 姚鹏, 甄毓, 姚庆祯, 米铁柱, 陈洪涛. 河口及近岸海域底边界层生物地球化学过程研究进展[J]. 海洋学报, 2011, 33(5): 1-8.
引用本文: 于志刚, 姚鹏, 甄毓, 姚庆祯, 米铁柱, 陈洪涛. 河口及近岸海域底边界层生物地球化学过程研究进展[J]. 海洋学报, 2011, 33(5): 1-8.
YU Zhi-gang, YAO Peng, ZHEN Yu, YAO Qing-zhen, MI Tie-zhu, CHEN Hong-tao. Advances in biogeochemical process in benthic boundary layer of estuarine and coastal area[J]. Haiyang Xuebao, 2011, 33(5): 1-8.
Citation: YU Zhi-gang, YAO Peng, ZHEN Yu, YAO Qing-zhen, MI Tie-zhu, CHEN Hong-tao. Advances in biogeochemical process in benthic boundary layer of estuarine and coastal area[J]. Haiyang Xuebao, 2011, 33(5): 1-8.

河口及近岸海域底边界层生物地球化学过程研究进展

详细信息
  • 基金项目:  国家自然科学基金重大国际(地区)合作研究项目"长江口及邻近海域底边界层生物地球化学过程研究"(40920164004);国家自然科学基金上项目"不同粒径颗粒物在高浑浊河口生物地球化学过程中的作用研究"(40976044)资助。

Advances in biogeochemical process in benthic boundary layer of estuarine and coastal area

More Information
  • 摘要: 河口及近岸海域底边界层的生物地球化学过程在很大程度上影响着陆源物质的迁移转化及向海洋的输送通量,是陆海相互作用研究、海洋碳的"源、汇"研究以及氮、磷循环研究的关键。本文对河口及近岸海域底边界层生物地球化学过程研究进展进行了综述,重点介绍了底边界层中移动泥的特点和功能及微生物在其生物地球化学过程中的作用,并对今后的研究进行了展望。
  • [1] BIANCHI T S,ALLISON M A.Large-river delta-front estuaries as natural"recorders"of global environmental change[J].Proceedings of the National Academy of Sciences,2009,106: 8085-8092.
    [2] LONGHURST A R,SATHYENDRENATH S,PLATT T,et al.An estimation of global primary production in the ocean from satellite radiometer data [J].Journal of Plankton Research,1995,17: 1245-1271.
    [3] MEADE R H.River-sediment inputs to major deltas[M]//MILLIMAN J,HAQ B(Eds.).Sea-Level Rise and Coastal Subsidence.London: Kluwer,1996:63-85.
    [4] DAGG M,BENNER R,LOHRENZ S E,et al.Transformation of dissolved and particulate materials on continental shelves influenced by large rivers: plume processes[J].Continental Shelf Research,2004,24: 833-858.
    [5] ALLISON M A,BIANCHI T S,MCKEE B A,et al.Carbon burial on river-dominated continental shelves: Impact of historical changes in sediment loading adjacent to the Mississippi River[J].Geophysical Research Letters,2007,34,L01606.
    [6] McKEE B A,ALLER R C,ALLISON M A,et al.Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: benthic boundary layer and seabed processes[J].Continental Shelf Research,2004,24: 899-926.
    [7] 李九发,戴志军,刘启贞,等. 长江河口絮凝泥沙颗粒粒径与浮泥形成现场观测[J]. 泥沙研究,2008,(3): 26-32.
    [8] 李九发,何青,徐海根. 长江河口浮泥形成机理及变化过程[J]. 海洋与湖沼,2001(3): 302-310.
    [9] 李九发,何青,张琛. 长江河口拦门沙河床淤积和泥沙再悬浮过程[J]. 海洋与湖沼,2000(1): 103-109.
    [10] 李九发,沈焕庭,万新宁,等. 长江河口涨潮槽泥沙运动规律[J]. 泥沙研究,2004(5): 34-40.
    [11] KINEKE G C,STERNBERG R W,TROWBRIDGE J H,et al.Fluid-mud processes on the Amazon continental shelf[J].Continental Shelf Research,1996,16: 667-696.
    [12] ALLISON M A,KINEKE G C,GORDON E S,et al.Development and reworking of a seasonal flood deposit on the inner continental shelf off the Atchafalaya River[J].Continental Shelf Research,2000,20: 2267-2294.
    [13] GEYER W R,KINEKE G C.Observations of currents and water properties in the Amazon frontal zone[J].Journal of Geophysical Research,1995,100: 2321-2339.
    [14] SMOAK J M,DEMASTER D J,KUEHL S A,et al.The behavior of particle-reactive tracers in a high turbidity environment: 234Th and 210Pb on the Amazon continental shelf[J].Geochimica et Cosmochimica Acta,1996,60: 2123-2137.
    [15] 邓绍云. 浮泥运动研究综述[J]. 人民黄河,2005,27(9): 21-24.
    [16] 蒋国俊,姚炎明.长江口北槽浮泥周期性变化初探[J]. 海洋学报,2006,28(12): 631-636.
    [17] 李炎,夏小明,董礼先. 椒江河口浮泥的分布和调整[J]. 海洋工程学报,1998(4): 72-82.
    [18] OGSTON A S,STERNBERG R W,NITTROUER C A,et al.Sediment delivery from the Fly River tidally dominated delta to the nearshore marine environment and the impact of El Nin[J].Journal of Geophysical Research,2008,113,F01S11.
    [19] HOLLAND K T,VINZON S B,CALLIARI L J.A field study of coastal dynamics on a muddy coast offshore of Cassino beach,Brazil [J].Continental Shelf Research,2009,29: 503-514.
    [20] JARAMILLO S,SHEREMET A,ALLISON M A,et al.Wave-mud interactions over the muddy Atchafalaya subaqueous clinoform,Louisiana,United States: Wave-supported sediment transport[J].Journal of Geophysical Research,2009,114,C4.
    [21] EISMA D,VAN DER MAREL H W.Marine muds along the Guyana coast and their origin from the Amazon basin [J].Contributions to Mineralogy and Petrology,1971,31: 321-334.
    [22] ALLER R C.Mobile deltaic and continental shelf muds as suboxic,fluidized bed reactors[J].Marine Chemistry,1998,61: 143-155.
    [23] ALLER R C,BLAIR N E.Carbon remineralization in the Amazon-Guianas mobile mudbelt: a sedimentary incinerator[J].Continental Shelf Research,2006,26: 2241-2259.
    [24] ALLER R C,BLAIR N E,BRUNSKILL G J.Early diagenetic cycling,incineration,and burial of sedimentary organic carbon in the central Gulf of Papua (Papua New Guinea)[J].Journal of Geophysical Research,2008,113,F01S09.
    [25] BIANCHI T S,ALLISON M A,CANUEL E A,et al.Rapid export of riverine-and shelf-derived organic matter into the Mississippi Canyon[J].EOS American Geophysical Union,2006,87: 565-573.
    [26] DAGG M,BIANCHI T S,MCKEE B A,et al.Fates of dissolved and particulate materials from the Mississippi River immediately after discharge into the northern Gulf of Mexico,USA,during a period of low wind-stress[J].Continental Shelf Research,2008,28: 1443-1450.
    [27] ZHU Z B,ALLER R C,MACK J.Stable carbon isotope cycling in mobile coastal muds of Amapa,Brazil[J].Continental Shelf Research,2002,22: 2065-2079.
    [28] CORBETT R,McKEE B A,Duncan D.An evaluation of mobile mud dynamics in the Mississippi River Deltaic region[J].Marine Geology,2004,209: 91-112.
    [29] CHEN N H,BIANCHI T S,MCKEE B A.Early diagenesis of chloropigment biomarkers in the lower Mississippi River and Louisiana shelf: implications for carbon cycling in a river-dominated margin[J].Marine Chemistry,2005,93: 159-177.
    [30] ALLER R C.Conceptual models of early diagenetic processes: The muddy seafloor as an unsteady,batch reactor[J].Journal of Marine Research,2004,62:815-835.
    [31] ALLER R C,HEILBRUN C,PANZECA C,et al.Coupling between sedimentary dynamics,early diagenetic processes,and biogeochemical cycling in the Amazon-Guianas mobile mud belt: coastal French Guiana[J].Marine Geology,2004,208: 331-360.
    [32] ALLER J Y,ALONGI D M,ALLER R C.Biological indicators of sedimentary dynamics in the central Gulf of Papua: Seasonal and decadal perspectives[J].Journal of Geophysical Research,2008,113,F01S08.
    [33] ALLER R C,HANNIDES A,HEILBRUN C,et al.Coupling of early diagenetic processes and sedimentary dynamics in tropical shelf environments: The Gulf of Papua deltaic complex[J].Continental Shelf Research,2004,24: 2455-2486.
    [34] ALLER R C,BLAIR N E.Early diagenetic remineralization of sedimentary organic C in the Gulf of Papua deltaic complex (Papua New Guinea): Net loss of terrestrial C and diagenetic fractionation of C isotopes[J].Geochimica et Cosmochimica Acta,2004,68: 1815-1825.
    [35] ABRIL G,HENRI E.Oxic/anoxic oscillations and organic carbon mineralization in an estuarine maximum turbidity zone (The Gironde,France) [J].Limnology and Oceanogrphy,1999,44: 1304-1315.
    [36] FABRES J,TESI T,VELEZ J,et al.Seasonal and event-controlled export of organic matter from the shelf towards the Gulf of Lions continental slope[J].Continental Shelf Research,2008,28: 1971-1983.
    [37] SAMPERE T P,BIANCHI T S,WAKEHAM S G,et al.Sources or organic matter in surface sediments of the louisiana continental margin: effects of primary depositional/transport pathways and a hurricane event[J].Continental Shelf Research,2008,28: 2472-2487.
    [38] LORENZONI L,THUNELL R C,BENITEZ-NELSON C R,et al.The importance of subsurface nepheloid layers in transport and delivery of sediments to the eastern Cariaco Basin,Venezuela[J].Deep-Sea Research I,2009,56: 2249-2262.
    [39] BIANCHI T S,GALLER J J,ALLISON M A.Hydrodynamic sorting and transport of terrestrially derived organic carbon in sediments of the Mississippi and Atchafalaya Rivers[J].Estuarine,Coastal and Shelf Science,2007,73: 211-222.
    [40] WAKEHAM S G,CANUEL E A,LERBERG E J,et al.Partitioning of organic matter in continental margin sediments among density fractions[J].Marine Chemistry,2009,115: 211-225.
    [41] ALLER J Y,ALLER R C.Physical disturbance creates bacterial dominance of benthic biological communities in tropical deltaic environments of the Gulf of Papua[J].Continental Shelf Research,2004,24: 2395-2416.
    [42] B ER S I,ARNOSTI C,VAN BEUSEKOM J E E,et al.Temporal variations in microbial activities and carbon turnover in subtidal sandy sediments[J].Biogeosciences,2009,6: 1149-1165.
    [43] ALLER J Y,ALLER R C,KEMP P F,et al.Fluidized muds: a novel setting for the generation of biosphere diversity through geologic time[J].Geobiology,2010,8(3):169-178.
    [44] TODOROV J R,CHISTOSERDOV A Y,ALLER J Y.Molecular analysis of microbial communities in mobile deltaic muds of Southeastern Papua New Guinea[J].FEMS Microbiology Ecology,2000,33: 147-155.
    [45] MADRID V M,ALLER J Y,ALLER R C.High prokaryote diversity and analysis of community structure in mobile mud deposits off French Guiana: identification of two new bacterial candidate divisions[J].FEMS Microbiology Ecology,2001,37: 197-209.
    [46] MADRID V M,ALLER R C,ALLER J Y,et al.Evidence of the activity of dissimilatory sulfate-reducing prokaryotes in nonsulfidogenic tropical mobile muds[J].FEMS Microbiol Ecol,2006,57: 169-181.
    [47] J RGENSEN B B.Mineralization of organic matter in the sea bed-the role of sulfate reduction[J].Nature,1982,296: 643-645.
    [48] GIHRING T M,CANION A,RIGGS A,et al.Denitrification in shallow,sublittoral Gulf of Mexico permeable sediments[J].Limnology and Oceanography,2010,55: 43-54.
    [49] RATTRAY J E,VAN DE VOSSENBERG J,HOPMANS E C,et al.Ladderane lipid distribution in four genera of anammox bacteria[J].Archives of Microbiology,2008,190: 51-66.
    [50] 姚鹏,于志刚.海洋环境中的厌氧氨氧化细菌与厌氧氨氧化作用[J].海洋学报,2011,33(1):1-8.
    [51] FRANCIS C A,BEMAN J M,KUYPERS M M M.New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation[J].Multidisciplinary Journal of Microbial Ecology,2007,1: 19-27.
    [52] SCHMID M,MAAS B,DAPENA A,et al.Biomarkers for in situ detection of anaerobic ammonium-oxidizing(anammox) bacteria[J].Applied and Environmental Microbiology,2005,71: 1677-1684.
  • [1] 齐富康, 边昌伟, 徐景平.  渤海海峡沉积物输运的参数化计算 . 海洋学报, 2020, 42(3): 83-96. doi: 10.3969/j.issn.0253-4193.2020.03.008
    [2] 王日明, 戴志军, 黄鹄, 梁喜幸, 黎树式, 胡宝清, 周晓妍, 吴天亮.  北部湾大风江与南流江河口红树林空间分布格局研究 . 海洋学报, 2020, 42(12): 54-61. doi: 10.3969/j.issn.0253-4193.2020.12.006
    [3] 王珊珊, 刘东艳, 王玉珏, 袁子能.  渤海3个河口区底栖硅藻群落的时空变化特征 . 海洋学报, 2020, 42(8): 101-114. doi: 10.3969/j.issn.0253-4193.2020.08.009
    [4] 刘大为, 刘兴宝, 胡克, 刘洪顺.  大凌河与辽河入海口沉积物黏土矿物组成研究 . 海洋学报, 2019, 41(2): 75-84. doi: 10.3969/j.issn.0253-4193.2019.02.007
    [5] 宋金明, 李学刚.  海洋沉积物/颗粒物在生源要素循环中的作用及生态学功能 . 海洋学报, 2018, 40(10): 1-13. doi: 10.3969/j.issn.0253-4193.2018.10.001
    [6] 芦静, 夏长水, 滕涌, 刘学海.  波浪-海流-微地形耦合的沉积动力模式建立及应用 . 海洋学报, 2017, 39(7): 12-25. doi: 10.3969/j.issn.0253-4193.2017.07.002
    [7] 姜广甲, 段国钦, 黄志雄, 蔡伟叙, 卢楚谦, 苏文, 阳杰, 张纯超.  珠江口海域主导光学因子的遥感分类及其变化特征 . 海洋学报, 2016, 38(9): 64-75. doi: 10.3969/j.issn.0253-4193.2016.09.007
    [8] 卢伍阳, 马增岭, 徐兆礼, 高倩.  春季我国不同纬度河口浮游动物群落变化趋势 . 海洋学报, 2016, 38(10): 83-93.
    [9] 邓伟铸, 吴加学, 刘欢, 任杰, 杨名名, 张云博.  基于ADV声学泥沙反演与扩散机制分析 . 海洋学报, 2014, 36(7): 57-69. doi: 10.3969/j.issn.0253-4193.2014.04.007
    [10] 刘瑞娟, 于培松, 扈传昱, 韩正兵, 潘建明.  南极普里兹湾沉积物中有机碳和总氮的含量与分布 . 海洋学报, 2014, 36(4): 118-125. doi: 10.3969/j.issn.0253-4193.2014.04.003
    [11] 王保栋, 孙霞, 韦钦胜, 谢琳萍.  我国近岸海域富营养化评价新方法及应用 . 海洋学报, 2012, 34(4): 61-66.
    [12] 潘德炉, 刘琼, 白雁.  DOC遥感研究进展——基于全球大河DOC与CDOM保守性特征 . 海洋学报, 2012, 34(4): 1-11.
    [13] 鲁远征, 吴加学, 刘欢.  河口底边界层湍流观测后处理技术方法分析 . 海洋学报, 2012, 34(5): 39-49.
    [14] 朱首贤, 丁平兴, 沙文钰, 张文静.  河口物质和水体长期输运分离的理论分析和观测验证 Ⅰ.物质和水体长期输运分离的理论分析 . 海洋学报, 2008, 30(6): 24-29.
    [15] 刘高峰, 沈焕庭, 吴加学, 吴华林.  河口涨落潮槽水动力特征及河槽类型判定 . 海洋学报, 2005, 27(5): 151-156.
    [16] 于志刚.  海水中溶解有机磷的测定方法 . 海洋学报, 1999, 21(5): 137-143.
    [17] 薛雄志, 洪华生, 黄邦钦, 戴家银, 邓永智.  厦门西海域沉积物中碱性磷酸酶活力的分布、动态及其与各形态磷的关系 . 海洋学报, 1995, 17(5): 81-87.
    [18] 林以安, 唐仁友, 李炎, 董恒霖, 关许为, 陈英祖.  长江口生源元素的生物地球化学特征与絮凝沉降的关系 . 海洋学报, 1995, 17(5): 65-72.
    [19] 彭云辉, 陈玲娣.  珠江河口水域溶解氧与硝酸盐、Chla及硝酸盐与磷酸盐的关系 . 海洋学报, 1994, 16(1): 136-141.
    [20] 施文远, 邱晓晖, 黄奕普.  九龙江—厦门湾河口区溶解226Ra的分布 . 海洋学报, 1993, 15(4): 50-55.
  • 加载中
计量
  • 文章访问数:  1550
  • HTML全文浏览量:  2
  • PDF下载量:  1672
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-09

河口及近岸海域底边界层生物地球化学过程研究进展

基金项目:  国家自然科学基金重大国际(地区)合作研究项目"长江口及邻近海域底边界层生物地球化学过程研究"(40920164004);国家自然科学基金上项目"不同粒径颗粒物在高浑浊河口生物地球化学过程中的作用研究"(40976044)资助。

摘要: 河口及近岸海域底边界层的生物地球化学过程在很大程度上影响着陆源物质的迁移转化及向海洋的输送通量,是陆海相互作用研究、海洋碳的"源、汇"研究以及氮、磷循环研究的关键。本文对河口及近岸海域底边界层生物地球化学过程研究进展进行了综述,重点介绍了底边界层中移动泥的特点和功能及微生物在其生物地球化学过程中的作用,并对今后的研究进行了展望。

English Abstract

参考文献 (52)

目录

    /

    返回文章
    返回