The development of Ulva prolifera green tide and the roles of nitrogen nutrients in it in the southern Yellow Sea in 2018
-
摘要: 根据2018年南黄海漂浮态浒苔(Ulva prolifera)绿潮规模卫星监测数据以及春、夏季(4月和7月,绿潮前后)水文环境要素和氮营养盐等数据,对2018年绿潮发展规律及不同氮组分在其中的作用进行分析。结果表明:浒苔于4月25日在江苏南通近海首次发现,随后其向北漂移增殖扩展在6月29日达到最大规模,8月中旬消失。绿潮漂移区域集中在122°E以西近海并呈现两个明显的发展阶段:35°N以南江苏近海绿潮快速增殖阶段和35°N以北山东半岛外海域绿潮聚积衰退阶段。各氮营养盐组分受径流输入、冷水团以及生物活动等因素影响,呈现明显的区域和季节特征。不同绿潮阶段受氮营养盐影响不同,绿潮快速增殖阶段,丰富的氮营养盐(总溶解氮(TDN)>20 μmol/L和溶解无机氮(DIN)>20 μmol/L)是浒苔藻快速繁殖生长的物质基础,此阶段为整个绿潮发展提供了主要的氮支撑且以DIN为主要形态。绿潮聚积衰退阶段,较低的可利用氮(DIN<2 μmol/L和尿素(urea-N)<1.5 μmol/L)不利于浒苔藻持续繁殖生长,此阶段内有机氮(如urea-N)在绿潮后期的氮支撑中起到重要作用。Abstract: Based on the daily satellite monitoring data of floating green tides, and the nitrogen nutrients and hydrological environment parameters were collected in spring (April, before green tides) and summer (July, later stage of green tides) cruises in the southern Yellow Sea (SYS) in 2018, we studied the spatio-temporal variation characteristics of the green tides, and the role of nitrogen nutrients in it. The results showed that the small U. prolifera patches were firstly observed in shallow waters off Nantong, Jiangsu Province on April 25, then floated northward and reached its maximum scale on the June 29, followed by decomposition and disappearance in the coast of Shandong Peninsula in the mid-August. The trajectory area of floating green tides was mainly located in the western of 122°E in the SYS, and showed two distinguishable development phases, the rapid growth phase in the south of 35°N, nearshore area of Jiangsu, and the decline phase in the north of 35°N, offshore area of Shandong Peninsula. The nitrogen nutrient components showed regional and seasonal variations, influenced by the freshwater influx, cold water masses, biological activity and other factors. The effects of nitrogen components were different in different development phases of green tides. The rich nitrogen nutrients from a variety of sources (total dissdved nitrogen (TDN) >20 μmol/L and dissolved inorganic nitrogen (DIN) >20 μmol/L) provided sufficient nitrogen for the development of green tides in the dominated form of DIN, and contributed to the fast reproduction and growth of U. prolifera in the rapid growth phase. While the U. prolifera showed a higher affinity for DON in the decline phase area, the urea-N become main nitrogen source for the development of green tides because of the poor bioavailable nitrogen content (DIN<2 μmol/L and urea-N<1.5 μmol/L) condition, which would limit the continuous growth of U. prolifera.
-
Key words:
- green tides /
- development phases /
- nitrogen sources /
- urea-N /
- southern Yellow Sea /
- Ulva prolifera
-
图 1 南黄海研究区域洋流系统(a)及站位设置(b, c)
1. 鲁北沿岸流;2. 黄海沿岸流和苏北沿岸流;3. 长江冲淡水−台湾暖流;4. 黄海暖流;5. 青岛冷水团(春季);6. 黄海冷水团(夏季、秋季);A. 苏北沿岸径流
Fig. 1 The current system (a) and sampling stations (b, c) in the study area of the southern Yellow Sea
1. Lubei Coastal Current; 2. Yellow Sea Coastal Current and Subei Coastal Current; 3. Changjiang Diluted Water and Taiwan Warm Current; 4. Yellow Sea Warm Current;5. Qingdao Cold Water Mass (spring);6. Yellow Sea Cold Water Mass (summer, autumn); A. Subei Coastal Diluted Water
表 2 调查海域浒苔暴发前后浒苔漂移区域与非浒苔区域表层营养盐浓度变化
Tab. 2 The variations of nitrogen nutrients in the different phases of green tides in the surface layer of the study area
浒苔漂移海域(122°E以西) 非浒苔漂移海域 122°E以西 35°N以南快速增殖区
(36 000 km2)35°N以北聚积衰退区
(24 000 km2)122°E以东 2018年4月 2018年7月 2018年4月 2018年7月 2018年4月 2018年7月 2018年4月 2018年7月 样品量/ind. 33 33 25 24 8 9 27 29 T/℃ 11.80±3.30 23.84±1.09 13.34±1.99 23.63±1.03 7.00±1.10 24.41±1.09 9.58±1.52 26.28±1.34 S 31.03±1.39 30.28±1.19 30.61±1.35 30.01±1.26 32.34±0.07 31.00±0.48 32.56±0.48 31.00±1.37 TSP/mg·L−1 125.04±100.12 60.66±41.23 159.28±91.24 82.71±30.84 18.03±2.31 14.13±2.54 38.44±38.49 18.08±13.89 ${\rm {NO}}_3^- $-N/μmol·L−1 14.52±14.19 8.46±7.38 18.98±13.51 11.25±6.75 0.59±1.11 1.01±1.11 5.37±3.99 3.72±5.18 ${\rm {NO}}_2^- $-N/μmol·L−1 0.15±0.09 0.38±0.27 0.18±0.08 0.46±0.25 0.04±0.03 0.17±0.21 0.13±0.09 0.38±0.42 ${\rm {NH}}_4^+ $-N/μmol·L−1 1.05±0.64 1.43±0.97 1.00±0.69 1.72±0.97 1.20±0.46 0.67±0.39 0.79±0.41 1.05±1.11 DIN/μmol·L−1 15.72±14.23 10.27±7.78 20.16±13.60 13.43±6.74 1.83±1.15 1.83±1.24 6.28±3.94 5.12±6.38 DON/μmol·L−1 5.73±2.42 7.17±2.57 5.32±2.35 7.57±2.85 6.96±2.35 6.08±1.10 5.47±1.92 4.93±1.86 TDN/μmol·L−1 21.85±13.81 17.48±8.67 26.21±13.23 21.07±7.37 8.79±3.06 7.91±1.70 11.75±4.44 10.05±6.63 urea-N/μmol·L−1 0.97±0.59 1.24±0.60 0.81±0.54 1.52±0.41 1.47±0.45 0.63±0.48 1.25±0.78 0.86±0.75 表 1 调查海域春、夏季温度、盐度,以及氮营养盐组分浓度
Tab. 1 Salinity, temperature and nitrogen nutrients in the study area of the southern Yellow Sea during spring and summer cruises
2018年4月 整体 表层 中层 底层 沿岸水 冷水团 黄海暖流 特征 − − − − S<30 T<6.98 S>33 样品量/个 − 59 59 59 8 19 17 T/℃ 9.21±2.60 10.77±2.87 8.06±1.51 7.96±1.58 14.11±1.20 5.64±0.92 9.38±1.11 S 32.19±1.04 31.71±1.33 32.55±0.44 32.6±0.50 29.12±0.90 32.36±0.08 33.28±0.25 TSP/mg·L−1 70.42±85.14 85.14±89.78 51.87±74.19 70.46±90.06 106.75±17.12 17.99±2.54 32.15±27.61 ${\rm {NO}}_3^- $-N/μmol·L−1 7.61±8.75 10.48±11.8 4.72±3.71 5.75±3.94 33.77±10.59 1.16±1.18 5.91±1.41 ${\rm {NO}}_2^- $-N/μmol·L−1 0.14±0.10 0.14±0.09 0.15±0.10 0.15±0.11 0.20±0.04 0.07±0.05 0.22±0.11 ${\rm {NH}}_4^+ $-N/μmol·L−1 1.11±0.66 0.94±0.56 1.19±0.73 1.30±0.69 1.18±1.00 1.65±0.50 0.70±0.34 DIN/μmol·L−1 8.86±8.71 11.56±11.88 6.06±3.57 7.21±3.79 35.15±10.58 2.89±1.35 6.83±1.45 DON/μmol·L−1 5.30±2.30 5.62±2.20 5.08±1.91 5.30±2.72 4.44±1.34 7.20±2.27 4.16±1.20 TDN/μmol·L−1 14.16±8.83 17.33±11.75 17.52±11.56 18.48±11.36 41.27±10.88 9.86±2.54 10.99±1.75 urea-N/μmol·L−1 1.28±0.72 1.11±0.69 1.40±0.79 1.42±0.66 0.74±0.45 1.99±0.59 1.18±0.62 2018年7月 整体 表层 真光层 中层 底层 沿岸水 冷水团 特征 − − − − − S<30 T<14 样品量/个 − 61 35 39 61 15 43 T/℃ 20.20±6.85 25.00±1.73 23.69±3.35 16.32±6.29 14.23±6.98 24.79±1.64 9.84±1.72 S 31.63±1.26 30.6±1.32 31.69±0.65 32.44±0.61 32.47±0.55 28.66±0.82 32.7±0.24 TSP/mg·L−1 27.46±24.99 38.56±37.13 19.76±8.88 19.88±8.23 25.32±12.53 70.98±47.07 19.39±4.15 ${\rm {NO}}_3^- $-N/μmol·L−1 4.85±5.29 6.18±6.87 3.02±3.93 3.88±3.86 5.67±3.62 15.18±6.03 4.37±3.08 ${\rm {NO}}_2^- $-N/μmol·L−1 0.39±0.47 0.37±0.34 0.51±0.62 0.46±0.57 0.46±0.54 0.45±0.32 0.13±0.15 ${\rm {NH}}_4^+ $-N/μmol·L−1 0.87±0.82 1.25±1.05 0.75±0.54 0.61±0.48 0.66±0.57 1.82±1.41 0.50±0.46 DIN/μmol·L−1 6.09±5.92 7.79±7.60 4.23±4.75 4.95±4.47 6.78±3.94 17.45±6.32 5.00±2.93 DON/μmol·L−1 4.83±2.49 6.12±2.53 4.68±2.22 3.96±2.29 3.55±1.94 6.38±2.45 4.00±2.06 TDN/μmol·L−1 10.93±6.27 13.93±8.63 8.91±3.46 8.91±3.23 10.33±3.25 23.83±7.82 9.00±2.33 urea-N/μmol·L−1 0.84±0.57 1.05±0.70 0.73±0.41 0.77±0.43 1.05±0.74 1.57±0.86 0.77±0.54 注:−表示无数据。 -
[1] Gladyshev M I, Gubelit Y I. Green tides: new consequences of the eutrophication of natural waters (invited review)[J]. Contemporary Problems of Ecology, 2019, 12(2): 109−125. doi: 10.1134/S1995425519020057 [2] Fletcher R L. The occurrence of “Green Tides”— a review[M]//Schramm W, Nienhuis P H. Marine Benthic Vegetation. Ecological Studies (Analysis and Synthesis). Berlin, Heidelberg: Springer, 1996. [3] Bastos E, Gouvêa L P, Horta P A, et al. Interaction between salinity and phosphorus availability can influence seed production of Ulva ohnoi (Chlorophyta, Ulvales)[J]. Environmental and Experimental Botany, 2019, 167: 103860. doi: 10.1016/j.envexpbot.2019.103860 [4] Sun Kaiming, Li Ruixiang, Li Yan, et al. Responses of Ulva prolifera to short-term nutrient enrichment under light and dark conditions[J]. Estuarine, Coastal and Shelf Science, 2015, 163: 56−62. doi: 10.1016/j.ecss.2015.03.018 [5] Li Yahe, Zheng Mingshan, Lin Jiajia, et al. Darkness and low nighttime temperature modulate the growth and photosynthetic performance of Ulva prolifera under lower salinity[J]. Marine Pollution Bulletin, 2019, 146: 85−91. doi: 10.1016/j.marpolbul.2019.05.058 [6] Zhao Xinyu, Tang Xuexi, Hu Shunxin, et al. Photosynthetic response of floating Ulva prolifera to diurnal changes of in-situ environments on the sea surface[J]. Journal of Oceanology and Limnology, 2018, 37(2): 589−599. [7] Fort A, Mannion C, Fariñas-Franco J M, et al. Green tides select for fast expanding Ulva strains[J]. Science of the Total Environment, 2020, 698: 134337. doi: 10.1016/j.scitotenv.2019.134337 [8] 姜雪, 张云峰. 江苏灌河入海污染通量与经济增长关系分析研究[J]. 环境科学与管理, 2015, 40(8): 30−33. doi: 10.3969/j.issn.1673-1212.2015.08.009Jiang Xue, Zhang Yunfeng. Relationship between economic growth and sea pollution fluxes from Ganhe River[J]. Environmental Science and Management, 2015, 40(8): 30−33. doi: 10.3969/j.issn.1673-1212.2015.08.009 [9] 靳姗姗, 孙俊川, 魏泽勋. 渤海沿岸流季节变化对青岛冷水团影响的初步分析[J]. 海洋科学进展, 2017, 35(3): 317−328. doi: 10.3969/j.issn.1671-6647.2017.03.002Jin Shanshan, Sun Junchuan, Wei Zexun. Effects of the seasonal variability of the Bohai Sea coastal current on the Qingdao Cold Water Mass[J]. Advances in Marine Science, 2017, 35(3): 317−328. doi: 10.3969/j.issn.1671-6647.2017.03.002 [10] 赵胜, 于非, 刁新源, 等. 黄海暖流的路径及机制研究[J]. 海洋科学, 2011, 35(11): 73−80.Zhao Sheng, Yu Fei, Diao Xinyuan, et al. The path and mechanism of the Yellow Sea Warm Current[J]. Marine Sciences, 2011, 35(11): 73−80. [11] 高嵩, 马家海, Satoshi S, et al. 2010年中国黄海绿潮藻优势种分子生物学鉴定及形态特征研究[J]. 生态科学, 2013, 32(6): 703−710.Gao Song, Ma Jiahai, Satoshi S, et al. Molecular identification of dominant green tide algae in Yellow Sea China 2010, and their morphological characteristics[J]. Ecological Science, 2013, 32(6): 703−710. [12] Zhao Jin, Jiang Peng, Liu Zhengyi, et al. The Yellow Sea green tides were dominated by one species, Ulva (Enteromorpha) prolifera, from 2007 to 2011[J]. Chinese Science Bulletin, 2013, 58(19): 2298−2302. doi: 10.1007/s11434-012-5441-3 [13] Wang Yu, Liu Feng, Liu Xingfeng, et al. Comparative transcriptome analysis of four co-occurring Ulva species for understanding the dominance of Ulva prolifera in the Yellow Sea green tides[J]. Journal of Applied Phycology, 2019, 31(5): 3303−3316. doi: 10.1007/s10811-019-01810-z [14] 王宗灵, 傅明珠, 肖洁, 等. 黄海浒苔绿潮研究进展[J]. 海洋学报, 2018, 40(2): 1−13.Wang Zongling, Fu Mingzhu, Xiao Jie, et al. Progress on the study of the Yellow Sea green tides caused by Ulva prolifera[J]. Haiyang Xuebao, 2018, 40(2): 1−13. [15] 卢健, 张启龙, 李安春. 苏北沿岸流对浒苔暴发及漂移过程的影响[J]. 海洋科学, 2014, 38(10): 83−89. doi: 10.11759/hykx20130128001Lu Jian, Zhang Qilong, Li Anchun. The influence of Subei coastal current on the outbreak and drift of Enteromorpha prolifera[J]. Marine Sciences, 2014, 38(10): 83−89. doi: 10.11759/hykx20130128001 [16] 叶乃好, 张晓雯, 毛玉泽, 等. 黄海绿潮浒苔(Enteromorpha prolifera)生活史的初步研究[J]. 中国水产科学, 2008, 15(5): 853−859. doi: 10.3321/j.issn:1005-8737.2008.05.019Ye Naihao, Zhang Xiaowen, Mao Yuze, et al. Life history of Enteromorpha prolifera under laboratory conditions[J]. Journal of Fishery Sciences of China, 2008, 15(5): 853−859. doi: 10.3321/j.issn:1005-8737.2008.05.019 [17] Li Dongxue, Gao Zhiqiang, Song Debin, et al. Characteristics and influence of green tide drift and dissipation in Shandong Rongcheng coastal water based on remote sensing[J]. Estuarine, Coastal and Shelf Science, 2019, 227: 106335. doi: 10.1016/j.ecss.2019.106335 [18] Geng Huixia, Yu Rencheng, Zhang Qingchun, et al. Tracing the settlement region of massive floating green algae in the Yellow Sea[J]. Journal of Oceanology and Limnology, 2019, 37(5): 1555−1565. doi: 10.1007/s00343-019-8348-x [19] 刘湘庆, 王宗灵, 辛明, 等. 浒苔衰亡过程中营养盐的释放过程及规律[J]. 海洋环境科学, 2016, 35(6): 801−805, 813.Liu Xiangqing, Wang Zongling, Xin Ming, et al. Study on process of nutrient release during the decay of Ulva prolifera[J]. Marine Environmental Science, 2016, 35(6): 801−805, 813. [20] Le Luherne E, Réveillac E, Ponsero A, et al. Fish community responses to green tides in shallow estuarine and coastal areas[J]. Estuarine, Coastal and Shelf Science, 2016, 175: 79−92. doi: 10.1016/j.ecss.2016.03.031 [21] Paumier A, Tatlian T, Réveillac E, et al. Impacts of green tides on estuarine fish assemblages[J]. Estuarine, Coastal and Shelf Science, 2018, 213: 176−184. doi: 10.1016/j.ecss.2018.08.021 [22] Shan Jingzhu, Li Jingmei, Xu Zhihua. Estimating ecological damage caused by green tides in the Yellow Sea: A choice experiment approach incorporating extended theory of planned behavior[J]. Ocean & Coastal Management, 2019, 181: 104901. [23] Li Hongmei, Zhang Yongyu, Chen Jing, et al. Nitrogen uptake and assimilation preferences of the main green tide alga Ulva prolifera in the Yellow Sea, China[J]. Journal of Applied Phycology, 2018, 31(1): 625−635. [24] 胡劲召, 齐丹, 徐功娣. 浒苔对富营养化海水中氮磷去除效果的研究[J]. 海南热带海洋学院学报, 2017, 24(5): 27−30, 41.Hu Jinzhao, Qi Dan, Xu Gongdi. Enteromorpha's N-P removal efficiency in the eutrophicated seawater[J]. Journal of Hainan Tropical Ocean University, 2017, 24(5): 27−30, 41. [25] 李俭平. 浒苔对氮营养盐的响应及其氮营养盐吸收动力学和生理生态研究[D]. 青岛: 中国科学院海洋研究所, 2011.Li Jianping. The response to nitrogen nutrient, and the uptake kinetics mechanism of nitrogen and ecophysiological analysis of Enteromorpha prolifera[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2011. [26] Li Hongmei, Zhang Yongyu, Tang Hongjie, et al. Spatiotemporal variations of inorganic nutrients along the Jiangsu coast, China, and the occurrence of macroalgal blooms (green tides) in the southern Yellow Sea[J]. Harmful Algae, 2017, 63: 164−172. doi: 10.1016/j.hal.2017.02.006 [27] Shi Xiaoyong, Qi Mingyan, Tang Hongjie, et al. Spatial and temporal nutrient variations in the Yellow Sea and their effects on Ulva prolifera blooms[J]. Estuarine, Coastal and Shelf Science, 2015, 163: 36−43. doi: 10.1016/j.ecss.2015.02.007 [28] Li Hongmei, Zhang Yongyu, Han Xiurong, et al. Growth responses of Ulva prolifera to inorganic and organic nutrients: Implications for macroalgal blooms in the southern Yellow Sea, China[J]. Scientific Reports, 2016, 6: 26498. doi: 10.1038/srep26498 [29] Xiu Bin, Liang Shengkang, He Xingliang, et al. Bioavailability of dissolved organic nitrogen and its uptake by Ulva prolifera: Implications in the outbreak of a green bloom off the coast of Qingdao, China[J]. Marine Pollution Bulletin, 2019, 140: 563−572. doi: 10.1016/j.marpolbul.2019.01.057 [30] 王文善. 世界化肥供需概况及我国化肥工业现状[J]. 化肥工业, 2005, 32(6): 1−5. doi: 10.3969/j.issn.1006-7779.2005.06.001Wang Wenshan. General situation of global supply and demand of chemical fertilizers and present status of domestic chemical fertilizer industry[J]. Chemical Fertilizer Industry, 2005, 32(6): 1−5. doi: 10.3969/j.issn.1006-7779.2005.06.001 [31] 伯绍毅, 石金辉, 高会旺, 等. 冬、春季东海气溶胶和雨水中尿素氮的研究[J]. 环境科学, 2009, 30(1): 14−22. doi: 10.3321/j.issn:0250-3301.2009.01.003Bo Shaoyi, Shi Jinhui, Gao Huiwang, et al. Urea in aerosol and rainwater over the East China Sea in winter and spring[J]. Environmental Science, 2009, 30(1): 14−22. doi: 10.3321/j.issn:0250-3301.2009.01.003 [32] 李志林, 石晓勇, 张传松. 春季黄渤海海水中尿素分布特征及溶解态氮的组成[J]. 环境科学, 2015, 36(11): 3999−4004.Li Zhilin, Shi Xiaoyong, Zhang Chuansong. Distribution characteristics of urea and constitution of dissolved nitrogen in the Bohai Sea and the Huanghai Sea in spring[J]. Environmental Science, 2015, 36(11): 3999−4004. [33] 钱佐国, 孙明昆, 杨炼锋, 等. 测定海水中尿素的双乙酰单肟法研究[J]. 黄渤海海洋, 1984, 2(1): 66−71.Qian Zuoguo, Sun Mingkun, Yang Lianfeng, et al. On the diacetyl monoxime method for determination of urea in seawater[J]. Journal of Oceanography of Huanghai & Bohai Seas, 1984, 2(1): 66−71. [34] Mulvenna P F, Savidge G. A modified manual method for the determination of urea in seawater using diacetylmonoxime reagent[J]. Estuarine, Coastal and Shelf Science, 1992, 34(5): 429−438. doi: 10.1016/S0272-7714(05)80115-5 [35] Grasshoff K, Kremling K, Ehrhardt M. Methods of Seawater Analysis[M]. 3rd ed. Weinheim: VCH Pubisher, 2007. [36] Xu Qing, Zhang Hongyuan, Cheng Yongcun. Multi-sensor monitoring of Ulva prolifera blooms in the Yellow Sea using different methods[J]. Frontiers of Earth Science, 2016, 10(2): 378−388. doi: 10.1007/s11707-015-0528-1 [37] Qi Lin, Hu Chuanmin, Xing Qianguo, et al. Long-term trend of Ulva prolifera blooms in the western Yellow Sea[J]. Harmful Algae, 2016, 58: 35−44. doi: 10.1016/j.hal.2016.07.004 [38] 自然资源部海洋预警监测司. 2018年中国海洋灾害公报[R]. 北京: 自然资源部, 2018.Marine Early Warning and Monitoring Division, Ministry of Natural Resources. Bulletin of China marine disaster 2018[R]. Beijing: Ministry of Natural Resources, 2018. [39] 吴孟泉, 郭浩, 张安定, 等. 2008年−2012年山东半岛海域浒苔时空分布特征研究[J]. 光谱学与光谱分析, 2014, 34(5): 1312−1318. doi: 10.3964/j.issn.1000-0593(2014)05-1312-07Wu Mengquan, Guo Hao, Zhang Anding, et al. Research on the characteristics of Ulva. prolifera in Shandong Peninsula During 2008−2012 Based on MODIS data[J]. Spectroscopy and Spectral Analysis, 2014, 34(5): 1312−1318. doi: 10.3964/j.issn.1000-0593(2014)05-1312-07 [40] 丁月旻. 黄海浒苔绿潮中生源要素的迁移转化及对生态环境的影响[D]. 青岛: 中国科学院海洋研究所, 2014.Ding Yuemin. Impacts of Ulva (Enteromorpha) prolifera in the green tide on the Yellow Sea ecological environment-implications from migration and transformation of biogenic elements[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2014. [41] Zhang Jianheng, Huo Yuanzi, Zhang Zhenglong, et al. Variations of morphology and photosynthetic performances of Ulva prolifera during the whole green tide blooming process in the Yellow Sea[J]. Marine Environmental Research, 2013, 92: 35−42. doi: 10.1016/j.marenvres.2013.08.009 [42] 黄广勇, 查红, 闻余华. 沿海涵闸典型年入海径流(量)与闸下港道冲淤关系分析[J]. 江苏水利, 2015, (12): 27−29, 31. doi: 10.3969/j.issn.1007-7839.2015.12.011Huang Guangyong, Zha Hong, Wen Yuhua. Analysis of the relationship between the typical annual runoff of coastal culvert and the scour and silt of sluice gate[J]. Jiangsu Water Resources, 2015, (12): 27−29, 31. doi: 10.3969/j.issn.1007-7839.2015.12.011 [43] Collier J L, Baker K M, Bell S L. Diversity of urea-degrading microorganisms in open-ocean and estuarine planktonic communities[J]. Environmental Microbiology, 2009, 11(12): 3118−3131. doi: 10.1111/j.1462-2920.2009.02016.x [44] Solomon C M, Collier J L, Berg G M, et al. Role of urea in microbial metabolism in aquatic systems: a biochemical and molecular review[J]. Aquatic Microbial Ecology, 2010, 59(1): 67−88. [45] Wang Changyou, Su Rongguo, Guo Laodong, et al. Nutrient absorption by Ulva prolifera and the growth mechanism leading to green-tides[J]. Estuarine, Coastal and Shelf Science, 2019, 227: 106329. doi: 10.1016/j.ecss.2019.106329 [46] 黄凯旋, 张云, 欧林坚, 等. 海南岛南北近岸海湾浮游生物对尿素的生物可利用性比较研究[J]. 海洋科学, 2014, 38(10): 76−82. doi: 10.11759/hykx20130628001Huang Kaixuan, Zhang Yun, Ou Linjian, et al. Comparative study on urea bioavailability by plankton in the southern and northern coastal waters of Hainan Island[J]. Marine Sciences, 2014, 38(10): 76−82. doi: 10.11759/hykx20130628001