Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
Li Gaojin,Luo Zhehui,Cai Huayang, et al. Spatial distribution of Arctic tidal dynamics and analysis of tidal wave propagation characteristics[J]. Haiyang Xuebao,2025, 47(x):1–13
Citation: Li Gaojin,Luo Zhehui,Cai Huayang, et al. Spatial distribution of Arctic tidal dynamics and analysis of tidal wave propagation characteristics[J]. Haiyang Xuebao,2025, 47(x):1–13

Spatial distribution of Arctic tidal dynamics and analysis of tidal wave propagation characteristics

  • Received Date: 2024-10-25
  • Rev Recd Date: 2025-03-19
  • Available Online: 2025-04-24
  • The Arctic has become a global strategic focal point due to its rich mineral resources, navigational routes, and unique geopolitical landscape. Understanding the tidal dynamics in Arctic waters is key to assessing its environmental patterns and resource development potential. This study analyzes the primary tidal characteristics and tidal wave propagation in the Arctic Ocean using oceanographic statistical methods, based on the Arc5km2018 Arctic tidal model and the ArcTiCA tidal dataset. The results show that semi-diurnal tides dominate the region, with the M2 tidal constituent being the most significant, reaching amplitudes of up to 1.2 m, while the central areas exhibit much smaller amplitudes (less than 0.1 m). In coastal and archipelago regions, shallow-water tides significantly influence tidal asymmetry, with the absolute value of the tidal asymmetry coefficient exceeding 0.2. Due to complex topography and coastlines, multiple counterclockwise amphidromic points and tidal convergence zones, formed by the confluence of various tidal waves, are present in the Arctic. Tidal waves primarily propagate from the Norwegian Sea into the Barents Sea, and from the Greenland Sea toward the East Siberian Sea, Chukchi Sea, and the Parry Archipelago, with propagation speeds generally not exceeding 200 m/s, and being positively correlated with the square root of water depth. The amplitude gradient is generally below 5 × 10−3 km−1. This study provides critical data to support the integrated management and resource development of the Arctic region.
  • loading
  • [1]
    康文中. 大国博弈下的北极治理与中国权益[D]. 北京: 中共中央党校, 2012.

    Kang Wenzhong. Arctic governance and China’s rights and interests under great power competition[D]. Beijing: Party School of the Central Committee of CPC, 2012. (查阅网上资料, 未找到文献英文翻译, 请确认)
    [2]
    史佳卉. 北极资源的开发与利用[J]. 湖南农机, 2012, 39(1): 137−138.

    Shi Jiahui. Arctic resource development and utilization[J]. Hunan Agricultural Machinery, 2012, 39(1): 137−138.
    [3]
    于立伟, 王俊荣, 王树青, 等. 我国极地装备技术发展战略研究[J]. 中国工程科学, 2020, 22(6): 84−93.

    Yu Liwei, Wang Junrong, Wang Shuqing, et al. Development strategy for Polar equipment in China[J]. Strategic Study of Chinese Academy of Engineering, 2020, 22(6): 84−93.
    [4]
    胡冰, 罗文俊, 殷华兵. 我国北极航运发展需求浅析[J]. 航海技术, 2022(5): 76−79.

    Hu Bing, Luo Wenjun, Yin Huabin. Analysis on the development demand of China’s Arctic shipping[J]. Marine Technology, 2022(5): 76−79.
    [5]
    Defant A. Physical Oceanography of Vol Ⅱ[M]. New York: Pregamon Press, 1960: 417−419.
    [6]
    郑文振, 陈福年, 陈新忠. 台湾海峡的潮汐和潮流[J]. 台湾海峡, 1982, 1(2): 1−4.

    Zheng Wenzhen, Chen Funian, Chen Xinzhong. Tides and tidal currents in the Taiwan Strait[J]. Taiwan Strait, 1982, 1(2): 1−4.
    [7]
    于宜法, 刘兰, 郭明克. 海平面上升导致渤、黄、东海潮波变化的数值研究Ⅱ——海平面上升后渤、黄、东海潮波的数值模拟[J]. 中国海洋大学学报, 2007, 37(1): 7−14.

    Yu Yifa, Liu Lan, Guo Mingke. Numerical research on tidal waves changes due to mean-sea-level rise in the Bohai Sea, the Huanghai Sea and the East China Sea Ⅱ: Numerical modeling of tidal waves after mean-sea-level rise in the areas[J]. Periodical of Ocean University of China, 2007, 37(1): 7−14.
    [8]
    梁慧迪, 匡翠萍. 岸线变化及海平面上升对渤海潮波运动影响研究[J]. 水动力学研究与进展, 2021, 36(3): 462−470.

    Liang Huidi, Kuang Cuiping. Impacts of coastline changes and sea level rise on tides in the Bohai Sea[J]. Journal of Hydrodynamics, 2021, 36(3): 462−470.
    [9]
    叶安乐, 梅丽明. 渤黄东海潮波数值模拟[J]. 海洋与湖沼, 1995, 26(1): 63−70. doi: 10.3321/j.issn:0029-814X.1995.01.011

    Ye Anle, Mei Liming. Numerical modelling of tidal waves in the Bohai Sea, the Huanghai Sea and the East China Sea[J]. Oceanologia et Limnologia Sinica, 1995, 26(1): 63−70. doi: 10.3321/j.issn:0029-814X.1995.01.011
    [10]
    Egbert G D, Bennett A F, Foreman M G G. TOPEX/POSEIDON tides estimated using a global inverse model[J]. Journal of Geophysical Research: Oceans, 1994, 99(C12): 24821−24852. doi: 10.1029/94JC01894
    [11]
    Le Provost C, Genco M L, Lyard F, et al. Spectroscopy of the world ocean tides from a finite element hydrodynamic model[J]. Journal of Geophysical Research: Oceans, 1994, 99(C12): 24777−24797. doi: 10.1029/94JC01381
    [12]
    孙维康, 周兴华, 周东旭, 等. 南极海域潮汐模型研究进展及精度评定[J]. 极地研究, 2021, 33(1): 13−26.

    Sun Weikang, Zhou Xinghua, Zhou Dongxu, et al. Development and accuracy of tide models in Antarctica[J]. Chinese Journal of Polar Research, 2021, 33(1): 13−26.
    [13]
    Kowalik Z, Proshutinsky A Y. The Arctic ocean tides[M]//Johannessen O M, Muench R D, Overland J E. The Polar Oceans and Their Role in Shaping the Global Environment, Volume 85. Washington: American Geophysical Union, 1994, 85: 137−158.
    [14]
    Stammer D, Ray R D, Andersen O B, et al. Accuracy assessment of global barotropic ocean tide models[J]. Reviews of Geophysics, 2014, 52(3): 243−282. doi: 10.1002/2014RG000450
    [15]
    Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2): 183−204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    [16]
    Padman L, Erofeeva S. A barotropic inverse tidal model for the Arctic Ocean[J]. Geophysical Research Letters, 2004, 31(2): L02303.
    [17]
    Green J A M, Huber M. Tidal dissipation in the early Eocene and implications for ocean mixing[J]. Geophysical Research Letters, 2013, 40(11): 2707−2713. doi: 10.1002/grl.50510
    [18]
    Wilmes S B, Green J A M. The evolution of tides and tidal dissipation over the past 21, 000 years[J]. Journal of Geophysical Research: Space Physics, 2014, 119(7): 4083−4100.
    [19]
    Pickering M D, Horsburgh K J, Blundell J R, et al. The impact of future sea-level rise on the global tides[J]. Continental Shelf Research, 2017, 142: 50−68. doi: 10.1016/j.csr.2017.02.004
    [20]
    Peterson R, Whitworth J D. A reexamination of the dividend threshold[J]. Academy of Business Research Journal, 2013. (查阅网上资料, 未找到卷期页码信息, 请确认)
    [21]
    Erofeeva S, Egbert G. Arc5km2018: Arctic Ocean inverse tide model on a 5 kilometer grid[EB/OL]. Dataset, Arctic Data Center, (2020). https://doi.org/10.18739/A21R6N14K. (查阅网上资料,未找到本条文献引用日期信息,请确认)
    [22]
    Hart-Davis M, Howard S L, Ray R, et al. Arctic tidal constituent atlas (ArcTiCA): a database of tide elevation constituents for the Arctic region from 1800 through present day[EB/OL]. NSF Arctic Data Center, (2023). https://arcticdata.io/catalog/view/doi:10.18739/A2VT1GR64. (查阅网上资料,未找到本条文献引用日期信息,请确认)
    [23]
    李翔. 北冰洋中层水的数值模拟研究[D]. 青岛: 中国海洋大学, 2013.

    Li Xiang. Numerical study on the Arctic intermediate water[D]. Qingdao: Ocean University of China, 2013.
    [24]
    Parkinson C L, Cavalieri D J. Arctic sea ice variability and trends, 1979-2006[J]. Journal of Geophysical Research: Oceans, 2008, 113(C7): C07003.
    [25]
    Comiso J C. Large decadal decline of the Arctic multiyear ice cover[J]. Journal of Climate, 2012, 25(4): 1176−1193. doi: 10.1175/JCLI-D-11-00113.1
    [26]
    李欣, 张月, 董琪. 北极海域水文特征变化研究进展[J]. 气象水文海洋仪器, 2022, 39(2): 39−44. doi: 10.3969/j.issn.1006-009X.2022.02.012

    Li Xin, Zhang Yue, Dong Qi. Research progress on the changes of hydrological characteristics in the Arctic waters[J]. Meteorological, Hydrological and Marine Instruments, 2022, 39(2): 39−44. doi: 10.3969/j.issn.1006-009X.2022.02.012
    [27]
    Jakobsson M, Cherkis N, Woodward J, Coakley B, Macnab R. New grid of Arctic bathymetry aids scientists and mapmakers[J]. Eos Transactions, American Geophysical Union, 2000, 81(9): 89−96. doi: 10.1029/00EO00059
    [28]
    Wang Heng, Zhang Ping, Hu Shuai, et al. Tidal regime shift in Lingdingyang Bay, the Pearl River Delta: An identification and assessment of driving factors[J]. Hydrological Processes, 2020, 34(13): 2878−2894. doi: 10.1002/hyp.13773
    [29]
    Song Dehai, Wang Xiaohua, Kiss A E, et al. The contribution to tidal asymmetry by different combinations of tidal constituents[J]. Journal of Geophysical Research: Oceans, 2011, 116(C12): C12007. doi: 10.1029/2011JC007270
    [30]
    Hart-Davis M G, Piccioni G, Dettmering D, et al. EOT20: A global ocean tide model from multi-mission satellite altimetry[J]. Earth System Science Data, 2021, 13(8): 3869−3884. doi: 10.5194/essd-13-3869-2021
    [31]
    Pan Haidong, Xu Tengfei, Wei Zexun. A modified tidal harmonic analysis model for short-term water level observations[J]. Ocean Modelling, 2023, 186: 102251. doi: 10.1016/j.ocemod.2023.102251
    [32]
    Edmonds D A, Caldwell R L, Brondizio E S, et al. Coastal flooding will disproportionately impact people on river deltas[J]. Nature Communications, 2020, 11(1): 4741. doi: 10.1038/s41467-020-18531-4
    [33]
    Fang Jiayi, Nicholls R J, Brown S, et al. Benefits of subsidence control for coastal flooding in China[J]. Nature Communications, 2022, 13(1): 6946. doi: 10.1038/s41467-022-34525-w
    [34]
    Rueda A, Vitousek S, Camus P, et al. A global classification of coastal flood hazard climates associated with large-scale oceanographic forcing[J]. Scientific Reports, 2017, 7: 5038. doi: 10.1038/s41598-017-05090-w
    [35]
    Matthews H D, Wynes A S. Current global efforts are insufficient to limit warming to 1.5°C[J]. Science, 2022, 376(6600): 1404−1409. doi: 10.1126/science.abo3378
    [36]
    Steele M, Morley R, Ermold W. PHC: a global ocean hydrography with a high-quality arctic ocean[J]. Journal of Climate, 2001, 14(9): 2079−2087. doi: 10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article views (7) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return