Citation: | Li Gaojin,Luo Zhehui,Cai Huayang, et al. Spatial distribution of Arctic tidal dynamics and analysis of tidal wave propagation characteristics[J]. Haiyang Xuebao,2025, 47(x):1–13 |
[1] |
康文中. 大国博弈下的北极治理与中国权益[D]. 北京: 中共中央党校, 2012.
Kang Wenzhong. Arctic governance and China’s rights and interests under great power competition[D]. Beijing: Party School of the Central Committee of CPC, 2012. (查阅网上资料, 未找到文献英文翻译, 请确认)
|
[2] |
史佳卉. 北极资源的开发与利用[J]. 湖南农机, 2012, 39(1): 137−138.
Shi Jiahui. Arctic resource development and utilization[J]. Hunan Agricultural Machinery, 2012, 39(1): 137−138.
|
[3] |
于立伟, 王俊荣, 王树青, 等. 我国极地装备技术发展战略研究[J]. 中国工程科学, 2020, 22(6): 84−93.
Yu Liwei, Wang Junrong, Wang Shuqing, et al. Development strategy for Polar equipment in China[J]. Strategic Study of Chinese Academy of Engineering, 2020, 22(6): 84−93.
|
[4] |
胡冰, 罗文俊, 殷华兵. 我国北极航运发展需求浅析[J]. 航海技术, 2022(5): 76−79.
Hu Bing, Luo Wenjun, Yin Huabin. Analysis on the development demand of China’s Arctic shipping[J]. Marine Technology, 2022(5): 76−79.
|
[5] |
Defant A. Physical Oceanography of Vol Ⅱ[M]. New York: Pregamon Press, 1960: 417−419.
|
[6] |
郑文振, 陈福年, 陈新忠. 台湾海峡的潮汐和潮流[J]. 台湾海峡, 1982, 1(2): 1−4.
Zheng Wenzhen, Chen Funian, Chen Xinzhong. Tides and tidal currents in the Taiwan Strait[J]. Taiwan Strait, 1982, 1(2): 1−4.
|
[7] |
于宜法, 刘兰, 郭明克. 海平面上升导致渤、黄、东海潮波变化的数值研究Ⅱ——海平面上升后渤、黄、东海潮波的数值模拟[J]. 中国海洋大学学报, 2007, 37(1): 7−14.
Yu Yifa, Liu Lan, Guo Mingke. Numerical research on tidal waves changes due to mean-sea-level rise in the Bohai Sea, the Huanghai Sea and the East China Sea Ⅱ: Numerical modeling of tidal waves after mean-sea-level rise in the areas[J]. Periodical of Ocean University of China, 2007, 37(1): 7−14.
|
[8] |
梁慧迪, 匡翠萍. 岸线变化及海平面上升对渤海潮波运动影响研究[J]. 水动力学研究与进展, 2021, 36(3): 462−470.
Liang Huidi, Kuang Cuiping. Impacts of coastline changes and sea level rise on tides in the Bohai Sea[J]. Journal of Hydrodynamics, 2021, 36(3): 462−470.
|
[9] |
叶安乐, 梅丽明. 渤黄东海潮波数值模拟[J]. 海洋与湖沼, 1995, 26(1): 63−70. doi: 10.3321/j.issn:0029-814X.1995.01.011
Ye Anle, Mei Liming. Numerical modelling of tidal waves in the Bohai Sea, the Huanghai Sea and the East China Sea[J]. Oceanologia et Limnologia Sinica, 1995, 26(1): 63−70. doi: 10.3321/j.issn:0029-814X.1995.01.011
|
[10] |
Egbert G D, Bennett A F, Foreman M G G. TOPEX/POSEIDON tides estimated using a global inverse model[J]. Journal of Geophysical Research: Oceans, 1994, 99(C12): 24821−24852. doi: 10.1029/94JC01894
|
[11] |
Le Provost C, Genco M L, Lyard F, et al. Spectroscopy of the world ocean tides from a finite element hydrodynamic model[J]. Journal of Geophysical Research: Oceans, 1994, 99(C12): 24777−24797. doi: 10.1029/94JC01381
|
[12] |
孙维康, 周兴华, 周东旭, 等. 南极海域潮汐模型研究进展及精度评定[J]. 极地研究, 2021, 33(1): 13−26.
Sun Weikang, Zhou Xinghua, Zhou Dongxu, et al. Development and accuracy of tide models in Antarctica[J]. Chinese Journal of Polar Research, 2021, 33(1): 13−26.
|
[13] |
Kowalik Z, Proshutinsky A Y. The Arctic ocean tides[M]//Johannessen O M, Muench R D, Overland J E. The Polar Oceans and Their Role in Shaping the Global Environment, Volume 85. Washington: American Geophysical Union, 1994, 85: 137−158.
|
[14] |
Stammer D, Ray R D, Andersen O B, et al. Accuracy assessment of global barotropic ocean tide models[J]. Reviews of Geophysics, 2014, 52(3): 243−282. doi: 10.1002/2014RG000450
|
[15] |
Egbert G D, Erofeeva S Y. Efficient inverse modeling of barotropic ocean tides[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(2): 183−204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
|
[16] |
Padman L, Erofeeva S. A barotropic inverse tidal model for the Arctic Ocean[J]. Geophysical Research Letters, 2004, 31(2): L02303.
|
[17] |
Green J A M, Huber M. Tidal dissipation in the early Eocene and implications for ocean mixing[J]. Geophysical Research Letters, 2013, 40(11): 2707−2713. doi: 10.1002/grl.50510
|
[18] |
Wilmes S B, Green J A M. The evolution of tides and tidal dissipation over the past 21, 000 years[J]. Journal of Geophysical Research: Space Physics, 2014, 119(7): 4083−4100.
|
[19] |
Pickering M D, Horsburgh K J, Blundell J R, et al. The impact of future sea-level rise on the global tides[J]. Continental Shelf Research, 2017, 142: 50−68. doi: 10.1016/j.csr.2017.02.004
|
[20] |
Peterson R, Whitworth J D. A reexamination of the dividend threshold[J]. Academy of Business Research Journal, 2013. (查阅网上资料, 未找到卷期页码信息, 请确认)
|
[21] |
Erofeeva S, Egbert G. Arc5km2018: Arctic Ocean inverse tide model on a 5 kilometer grid[EB/OL]. Dataset, Arctic Data Center, (2020). https://doi.org/10.18739/A21R6N14K. (查阅网上资料,未找到本条文献引用日期信息,请确认)
|
[22] |
Hart-Davis M, Howard S L, Ray R, et al. Arctic tidal constituent atlas (ArcTiCA): a database of tide elevation constituents for the Arctic region from 1800 through present day[EB/OL]. NSF Arctic Data Center, (2023). https://arcticdata.io/catalog/view/doi:10.18739/A2VT1GR64. (查阅网上资料,未找到本条文献引用日期信息,请确认)
|
[23] |
李翔. 北冰洋中层水的数值模拟研究[D]. 青岛: 中国海洋大学, 2013.
Li Xiang. Numerical study on the Arctic intermediate water[D]. Qingdao: Ocean University of China, 2013.
|
[24] |
Parkinson C L, Cavalieri D J. Arctic sea ice variability and trends, 1979-2006[J]. Journal of Geophysical Research: Oceans, 2008, 113(C7): C07003.
|
[25] |
Comiso J C. Large decadal decline of the Arctic multiyear ice cover[J]. Journal of Climate, 2012, 25(4): 1176−1193. doi: 10.1175/JCLI-D-11-00113.1
|
[26] |
李欣, 张月, 董琪. 北极海域水文特征变化研究进展[J]. 气象水文海洋仪器, 2022, 39(2): 39−44. doi: 10.3969/j.issn.1006-009X.2022.02.012
Li Xin, Zhang Yue, Dong Qi. Research progress on the changes of hydrological characteristics in the Arctic waters[J]. Meteorological, Hydrological and Marine Instruments, 2022, 39(2): 39−44. doi: 10.3969/j.issn.1006-009X.2022.02.012
|
[27] |
Jakobsson M, Cherkis N, Woodward J, Coakley B, Macnab R. New grid of Arctic bathymetry aids scientists and mapmakers[J]. Eos Transactions, American Geophysical Union, 2000, 81(9): 89−96. doi: 10.1029/00EO00059
|
[28] |
Wang Heng, Zhang Ping, Hu Shuai, et al. Tidal regime shift in Lingdingyang Bay, the Pearl River Delta: An identification and assessment of driving factors[J]. Hydrological Processes, 2020, 34(13): 2878−2894. doi: 10.1002/hyp.13773
|
[29] |
Song Dehai, Wang Xiaohua, Kiss A E, et al. The contribution to tidal asymmetry by different combinations of tidal constituents[J]. Journal of Geophysical Research: Oceans, 2011, 116(C12): C12007. doi: 10.1029/2011JC007270
|
[30] |
Hart-Davis M G, Piccioni G, Dettmering D, et al. EOT20: A global ocean tide model from multi-mission satellite altimetry[J]. Earth System Science Data, 2021, 13(8): 3869−3884. doi: 10.5194/essd-13-3869-2021
|
[31] |
Pan Haidong, Xu Tengfei, Wei Zexun. A modified tidal harmonic analysis model for short-term water level observations[J]. Ocean Modelling, 2023, 186: 102251. doi: 10.1016/j.ocemod.2023.102251
|
[32] |
Edmonds D A, Caldwell R L, Brondizio E S, et al. Coastal flooding will disproportionately impact people on river deltas[J]. Nature Communications, 2020, 11(1): 4741. doi: 10.1038/s41467-020-18531-4
|
[33] |
Fang Jiayi, Nicholls R J, Brown S, et al. Benefits of subsidence control for coastal flooding in China[J]. Nature Communications, 2022, 13(1): 6946. doi: 10.1038/s41467-022-34525-w
|
[34] |
Rueda A, Vitousek S, Camus P, et al. A global classification of coastal flood hazard climates associated with large-scale oceanographic forcing[J]. Scientific Reports, 2017, 7: 5038. doi: 10.1038/s41598-017-05090-w
|
[35] |
Matthews H D, Wynes A S. Current global efforts are insufficient to limit warming to 1.5°C[J]. Science, 2022, 376(6600): 1404−1409. doi: 10.1126/science.abo3378
|
[36] |
Steele M, Morley R, Ermold W. PHC: a global ocean hydrography with a high-quality arctic ocean[J]. Journal of Climate, 2001, 14(9): 2079−2087. doi: 10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2
|