Citation: | MO Jinying,TIAN Yichao,WANG Jiale, et al. Remote sensing inversion of COD in Maowei Sea and nearshore aquaculture ponds based on machine learning[J]. Haiyang Xuebao,2025, 47(x):1–13 |
[1] |
马达开, 尹洧. 水环境中有机污染综合指标监测方法及其进展[J]. 实验与分析, 2023, 1(1): 6−10.
Ma Dakai, Yin Wei. Monitoring methods and progress of organic pollutants in water environment[J]. Labor Praxis, 2023, 1(1): 6−10.
|
[2] |
Naylor R L, Hardy R W, Buschmann A H, et al. A 20-year retrospective review of global aquaculture[J]. Nature, 2021, 591(7851): 551−563. doi: 10.1038/s41586-021-03308-6
|
[3] |
第二次全国污染源普查公报[J]. 环境保护, 2020, 48(18): 8−10. (查阅网上资料, 未找到本条文献作者信息, 请确认)
The second national pollution source census bulletin[J]. Environmental Protection, 2020, 48(18): 8−10.
|
[4] |
陈一波, 宋国宝, 赵文星, 等. 中国海水养殖污染负荷估算[J]. 海洋环境科学, 2016, 35(1): 1−6,12.
Chen Yibo, Song Guobao, Zhao Wenxing, et al. Estimating pollutant loadings from mariculture in China[J]. Marine Environmental Science, 2016, 35(1): 1−6,12.
|
[5] |
邱嘉玲, 刘庆玉, 贺莉. 化学需氧量检测标准与检测方法进展[J]. 化学研究与应用, 2023, 35(12): 2809−2819.
Qiu Jialing, Liu Qingyu, He Li. Chemical oxygen demand test standard and test method[J]. Chemical Research and Application, 2023, 35(12): 2809−2819.
|
[6] |
范日高, 王武, 郑芝芳, 等. 近红外光谱的水体污染指标COD定量预测模型[J]. 福州大学学报(自然科学版), 2024, 52(2): 228−235.
Fan Rigao, Wang Wu, Zheng Zhifang, et al. Quantitative prediction model of COD water pollution index based on near-infrared spectroscopy[J]. Journal of Fuzhou University (Natural Science Edition), 2024, 52(2): 228−235.
|
[7] |
Zheng Zijia, Jiang Yizhu, Zhang Qiutong, et al. A feature selection method based on relief feature ranking with recursive feature elimination for the inversion of urban river water quality parameters using multispectral imagery from an unmanned aerial vehicle[J]. Water, 2024, 16(7): 1029. doi: 10.3390/w16071029
|
[8] |
Zhang Yishan, Kong Xin, Deng Licui, et al. Monitor water quality through retrieving water quality parameters from hyperspectral images using graph convolution network with superposition of multi-point effect: a case study in Maozhou River[J]. Journal of Environmental Management, 2023, 342: 118283. doi: 10.1016/j.jenvman.2023.118283
|
[9] |
董月群, 冒建华, 梁丹, 等. 城市河道无人机高光谱水质监测与应用[J]. 环境科学与技术, 2021, 44(S1): 289−296.
Dong Yuequn, Mao Jianhua, Liang Dan, et al. Water quality monitoring and application in urban river based on hyperspectral of unmanned aerial vehicle[J]. Environmental Science & Technology, 2021, 44(S1): 289−296.
|
[10] |
Hou Yikai, Zhang Anbing, Lv Rulan, et al. A study on water quality parameters estimation for urban rivers based on ground hyperspectral remote sensing technology[J]. Environmental Science and Pollution Research, 2022, 29(42): 63640−63654. doi: 10.1007/s11356-022-20293-z
|
[11] |
陈瑶, 黄长平, 张立福, 等. 水体COD光谱特性分析及遥感反演模型构建[J]. 光谱学与光谱分析, 2020, 40(3): 824−830.
Chen Yao, Huang Changping, Zhang Lifu, et al. Spectral characteristics analysis and remote sensing retrieval of COD concentration[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 824−830.
|
[12] |
赵旭阳, 刘征, 贺军亮, 等. 黄壁庄水库水质参数遥感反演研究[J]. 地理与地理信息科学, 2007, 23(6): 46−49.
Zhao Xuyang, Liu Zheng, He Junliang, et al. Hyperspectral characteristics and retrieval of water quality parameters for Huangbizhuang Reservoir[J]. Geography and Geo-Information Science, 2007, 23(6): 46−49.
|
[13] |
Yang Zhe, Gong Cailan, Ji Tiemei, et al. Water quality retrieval from ZY1-02D hyperspectral imagery in urban water bodies and comparison with sentinel-2[J]. Remote Sensing, 2022, 14(19): 5029. doi: 10.3390/rs14195029
|
[14] |
盛辉, 池海旭, 许明明, 等. 改进SVR的内陆水体COD高光谱遥感反演[J]. 光谱学与光谱分析, 2021, 41(11): 3565−3571.
Sheng Hui, Chi Haixu, Xu Mingming, et al. Inland water chemical oxygen demand estimation based on improved SVR for hyperspectral data[J]. Spectroscopy and Spectral Analysis, 2021, 41(11): 3565−3571.
|
[15] |
鲁婉婷, 徐攻博, 王昱, 等. 基于北京二号卫星影像与同步实测数据的椒江入海口水质遥感反演[J]. 杭州师范大学学报(自然科学版), 2023, 22(2): 218−224.
Lu Wanting, Xu Gongbo, Wang Yu, et al. Remote sensing retrieval of water quality at Jiaojiang Estuary based on Beijing No. 2 satellite image and synchronously measured data[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2023, 22(2): 218−224.
|
[16] |
王丽艳, 史小红, 孙标, 等. 基于MODIS数据遥感反演呼伦湖水体COD浓度的研究[J]. 环境工程, 2014, 32(12): 103−108.
Wang Liyan, Shi Xiaohong, Sun Biao, et al. Determination of COD concentration of water in Hulun Lake based on MODIS data[J]. Environmental Engineering, 2014, 32(12): 103−108.
|
[17] |
解启蒙, 林茂森, 杨国范, 等. 清河水库水体高锰酸盐指数遥感反演模型研究[J]. 中国农村水利水电, 2017(10): 57−61.
Xie Qimeng, Lin Maosen, Yang Guofan, et al. Study on remote sensing inversion model of permanganate index in Qinghe Reservoir[J]. China Rural Water and Hydropower, 2017(10): 57−61.
|
[18] |
郭荣幸, 王超梁, 陈济民, 等. 基于Sentinel-2多光谱遥感影像的小浪底水质反演[J]. 人民黄河, 2024, 46(1): 93−96,102. doi: 10.3969/j.issn.1000-1379.2024.01.016
Guo Rongxing, Wang Chaoliang, Chen Jimin, et al. Remote sensing inversion of water quality of Xiaolangdi Reservoir based on Sentinel-2 multi-spectral images[J]. Yellow River, 2024, 46(1): 93−96,102. doi: 10.3969/j.issn.1000-1379.2024.01.016
|
[19] |
Cao Xin, Zhang Jing, Meng Haobin, et al. Remote sensing inversion of water quality parameters in the Yellow River Delta[J]. Ecological Indicators, 2023, 155: 110914. doi: 10.1016/j.ecolind.2023.110914
|
[20] |
Peng Changchun, Xie Zhijun, Jin Xing. Using ensemble learning for remote sensing inversion of water quality parameters in Poyang Lake[J]. Sustainability, 2024, 16(8): 3355. doi: 10.3390/su16083355
|
[21] |
王姣, 李威, 赵卫权, 等. 基于哨兵-2数据的喀斯特高原深水湖库CODMn遥感反演[J]. 遥感技术与应用, 2024, 39(1): 98−109.
Wang Jiao, Li Wei, Zhao Weiquan, et al. Retrieving CODMn concentration in Karst Plateau Deep Lake reservoir using Sentinel-2 data[J]. Remote Sensing Technology and Application, 2024, 39(1): 98−109.
|
[22] |
高佳欣, 林昱坤, 涂耀仁, 等. 遥感反演技术应用于监测地表水体水质参数的现状与展望[J]. 遥感信息, 2023, 38(6): 1−14.
Gao Jiaxin, Lin Yukun, Tu Yaoren, et al. Current status and prospects of remote sensing inversion technology applied to monitoring water quality parameters of surface water[J]. Remote Sensing Information, 2023, 38(6): 1−14.
|
[23] |
Yang Haibo, Kong Jialin, Hu Huihui, et al. A review of remote sensing for water quality retrieval: progress and challenges[J]. Remote Sensing, 2022, 14(8): 1770. doi: 10.3390/rs14081770
|
[24] |
Cao Jiaju, Wen Xingping, Luo Dayou, et al. Study on water quality inversion model of Dianchi Lake based on Landsat 8 data[J]. Journal of Spectroscopy, 2022, 2022: 3341713.
|
[25] |
黄振辉, 杨小红, 王力哲, 等. 小样本下大冶湖非光学活性水质参数反演与时空变化分析[J]. 长江流域资源与环境, 2024, 33(1): 102−113.
Huang Zhenhui, Yang Xiaohong, Wang Lizhe, et al. Inversion and spatiotemporal variation of non-optically active water quality parameters in Daye Lake with small samples[J]. Resources and Environment in the Yangtze Basin, 2024, 33(1): 102−113.
|
[26] |
Gholizadeh M, Saeedi R, Bagheri A, et al. Machine learning-based prediction of effluent total suspended solids in a wastewater treatment plant using different feature selection approaches: a comparative study[J]. Environmental Research, 2024, 246: 118146. doi: 10.1016/j.envres.2024.118146
|
[27] |
盛辉, 池海旭, 许明明, 等. 改进SVR的内陆水体COD高光谱遥感反演[J]. 光谱学与光谱分析, 2021, 41(11): 3565−3571. (查阅网上资料, 该文献与第14条文献重复, 请确认)
Sheng Hui, Chi Haixu, Xu Mingming, et al. Inland water chemical oxygen demand estimation based on improved SVR for hyperspectral data[J]. Spectroscopy and Spectral Analysis, 2021, 41(11): 3565−3571.
|
[28] |
Zhao Yubo, Yu Tao, Hu Bingliang, et al. Retrieval of water quality parameters based on near-surface remote sensing and machine learning algorithm[J]. Remote Sensing, 2022, 14(21): 5305. doi: 10.3390/rs14215305
|
[29] |
王春玲, 史锴源, 明星, 等. 基于机器学习的水体化学需氧量高光谱反演模型对比研究[J]. 光谱学与光谱分析, 2022, 42(8): 2353−2358.
Wang Chunling, Shi Kaiyuan, Ming Xing, et al. A comparative study of the COD hyperspectral inversion models in water based on the maching learning[J]. Spectroscopy and Spectral Analysis, 2022, 42(8): 2353−2358.
|
[30] |
Zhang Yumeng, Jing Wenlong, Deng Yingbin, et al. Water quality parameters retrieval of coastal mariculture ponds based on UAV multispectral remote sensing[J]. Frontiers in Environmental Science, 2023, 11: 1079397. doi: 10.3389/fenvs.2023.1079397
|
[31] |
邹志科, 余蕾, 张煜, 等. 基于Sentinel2-L1C的江汉平原水产养殖区水质参数反演[J]. 长江科学院院报, 2023, 40(9): 181−187,194. doi: 10.11988/ckyyb.20220515
Zou Zhike, Yu Lei, Zhang Yu, et al. Inversion of water quality parameters in Jianghan Plain based on Sentinel2-L1C image[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(9): 181−187,194. doi: 10.11988/ckyyb.20220515
|
[32] |
胡义强, 杨骥, 荆文龙, 等. 茅尾海入海河口池塘养殖污染状况遥感调查[J]. 测绘通报, 2022(7): 12−17,53.
Hu Yiqiang, Yang Ji, Jing Wenlong, et al. Remote sensing investigation on water pollution of pond aquaculture in estuary of Maowei Sea[J]. Bulletin of Surveying and Mapping, 2022(7): 12−17,53.
|
[33] |
Xu Cheng, Yang Bin, Dan S F, et al. Spatiotemporal variations of biogenic elements and sources of sedimentary organic matter in the largest oyster mariculture bay (Maowei Sea), Southwest China[J]. Science of the Total Environment, 2020, 730: 139056. doi: 10.1016/j.scitotenv.2020.139056
|
[34] |
Yang Bin, Lan Rizhong, Lu Dongliang, et al. Phosphorus biogeochemical cycling in intertidal surface sediments from the Maowei Sea in the northern Beibu Gulf[J]. Regional Studies in Marine Science, 2019, 28: 100624. doi: 10.1016/j.rsma.2019.100624
|
[35] |
黄友菊, 田义超, 张强, 等. 资源一号02D高光谱数据红树林地上生物量反演[J]. 光谱学与光谱分析, 2023, 43(12): 3906−3915.
Huang Youju, Tian Yichao, Zhang Qiang, et al. Estimation of aboveground biomass of mangroves in Maowei Sea of Beibu Gulf based on ZY-1-02D satellite hyperspectral data[J]. Spectroscopy and Spectral Analysis, 2023, 43(12): 3906−3915.
|
[36] |
高金荣, 赵则春. 钦州茅尾海海域化学需氧量的分布特征及与富营养化的关系[J]. 海洋湖沼通报, 2021, 43(3): 145−150.
Gao Jinrong, Zhao Zechun. Distribution of COD and its relationship with Eutrophication in Maoweihai Bay of Qinzhou[J]. Transactions of Oceanology and Limnology, 2021, 43(3): 145−150.
|
[37] |
Lu Dangliang, Zhang Dong, Zhu Wenjuan, et al. Sources and long-term variation characteristics of dissolved nutrients in Maowei Sea, Beibu Gulf, China[J]. Journal of Hydrology, 2022, 615: 128576. doi: 10.1016/j.jhydrol.2022.128576
|
[38] |
Li Sijia, Song Kaishan, Wang Shuai, et al. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm[J]. Science of the Total Environment, 2021, 778: 146271. doi: 10.1016/j.scitotenv.2021.146271
|
[39] |
刘轩, 赵同谦, 蔡太义, 等. 丹江口水库总氮、氨氮遥感反演及时空变化研究[J]. 农业资源与环境学报, 2021, 38(5): 829−838.
Liu Xuan, Zhao Tongqian, Cai Taiyi, et al. Spatiotemporal monitoring of total nitrogen and ammonia nitrogen in Danjiangkou reservoir[J]. Journal of Agricultural Resources and Environment, 2021, 38(5): 829−838.
|
[40] |
Yuan Xingyu, Wang Shengrui, Fan Fuqiang, et al. Spatiotemporal dynamics and anthropologically dominated drivers of chlorophyll-a, TN and TP concentrations in the Pearl River Estuary based on retrieval algorithm and random forest regression[J]. Environmental Research, 2022, 215: 114380. doi: 10.1016/j.envres.2022.114380
|
[41] |
McFeeters S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7): 1425−1432. doi: 10.1080/01431169608948714
|
[42] |
Li Xiaojuan, Huang Mutao, Li Jianbao. Remote sensing inversion of lake water quality parameters based on ensemble modelling[C]//Proceedings of 2nd International Symposium on Architecture Research Frontiers and Ecological Environment (ARFEE 2019). EDP Sciences, 2020: 02007. (查阅网上资料, 未找到本条文献出版地信息, 请确认)
|
[43] |
Gao Lin, Wang Xiaofei, Johnson B A, et al. Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 364−377. doi: 10.1016/j.isprsjprs.2019.11.018
|
[44] |
朱冰川, 尤凯, 石浚哲, 等. 基于GOCI数据的太湖叶绿素a浓度反演和蓝藻水华遥感监测[J]. 环境污染与防治, 2020, 42(8): 1021−1025,1032.
Zhu Bingchuan, You Kai, Shi Junzhe, et al. Retrieval of chlorophyll-a and remote sensing monitoring of cyanobacteria blooms in Taihu Lake based on GOCI data[J]. Environmental Pollution & Control, 2020, 42(8): 1021−1025,1032.
|
[45] |
Prokhorenkova L, Gusev G, Vorobev A, et al. CatBoost: unbiased boosting with categorical features[C]//Proceedings of the 32nd International Conference on neural information processing systems. Montréal: Curran Associates Inc. , 2018.
|
[46] |
Friedman J H. Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics, 2001, 29(5): 1189−1232. doi: 10.1214/aos/1013203450
|
[47] |
Abedi F, Amirian‐Chakan A, Faraji M, et al. Salt dome related soil salinity in southern Iran: prediction and mapping with averaging machine learning models[J]. Land Degradation & Development, 2021, 32(3): 1540−1554.
|
[48] |
唐茂淞, 张楠, 李国辉, 等. 基于机器学习算法的棉田土壤钾、钠离子量预测[J]. 灌溉排水学报, 2023, 42(9): 32−39.
Tang Maosong, Zhang Nan, Li Guohui, et al. Predicting soil K+ and Na+ contents in cotton field using machine learning algorithm[J]. Journal of Irrigation and Drainage, 2023, 42(9): 32−39.
|
[49] |
Hajihosseinlou M, Maghsoudi A, Ghezelbash R. A novel scheme for mapping of MVT-type Pb–Zn prospectivity: LightGBM, a highly efficient gradient boosting decision tree machine learning algorithm[J]. Natural Resources Research, 2023, 32(6): 2417−2438. doi: 10.1007/s11053-023-10249-6
|
[50] |
程婉清, 袁定波, 熊鹏, 等. 基于多种机器学习算法的水质指数预测模型构建与评估[J]. 环境科学学报, 2023, 43(11): 144−152.
Cheng Wanqing, Yuan Dingbo, Xiong Peng, et al. Construction and evaluation of city water quality index prediction model based on multiple machine learning algorithms[J]. Acta Scientiae Circumstantiae, 2023, 43(11): 144−152.
|
[51] |
Genuer R, Poggi J M, Tuleau-Malot C. Variable selection using random forests[J]. Pattern Recognition Letters, 2010, 31(14): 2225−2236. doi: 10.1016/j.patrec.2010.03.014
|
[52] |
Chen Tianqi, Guestrin C. Xgboost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: Association for Computing Machinery, 2016: 785−794.
|
[53] |
贾涛, 韩萌, 王少峰, 等. 数据流决策树分类方法综述[J]. 南京师大学报(自然科学版), 2019, 42(4): 49−60.
Jia Tao, Han Meng, Wang Shaofeng, et al. Survey of decision tree classification methods over data streams[J]. Journal of Nanjing Normal University (Natural Science Edition), 2019, 42(4): 49−60.
|
[54] |
粟晖, 姚志湘, 黎国梁, 等. 生化废水COD的近红外光谱法测定[J]. 光谱实验室, 2011, 28(6): 3040−3043. doi: 10.3969/j.issn.1004-8138.2011.06.068
Su Hui, Yao Zhixiang, Li Guoliang, et al. Determination of COD in biological and chemical wastewater by near infrared spectrometry[J]. Chinese Journal of Spectroscopy Laboratory, 2011, 28(6): 3040−3043. doi: 10.3969/j.issn.1004-8138.2011.06.068
|
[55] |
唐海滨, 郑志伟, 胡莲, 等. 2008—2020年三峡库区小江叶绿素a的时空演变特征及驱动因子[J]. 湖泊科学, 2023, 35(5): 1529−1537. doi: 10.18307/2023.0512
Tang Haibin, Zheng Zhiwei, Hu Lian, et al. Spatiotemporal characteristics and driver analysis of chlorophyll-a in Xiaojiang River of the Three Gorges Reservoir from 2008 to 2020[J]. Journal of Lake Sciences, 2023, 35(5): 1529−1537. doi: 10.18307/2023.0512
|
[56] |
罗桂林, 田林锋. 基于WQI法的宁夏湖泊藻类爆发过程水环境质量变化及溯源探究[J]. 环境化学, 2021, 40(7): 2073−2082. doi: 10.7524/j.issn.0254-6108.2020100301
Luo Guilin, Tian Linfeng. Study on water environmental quality change and source tracing of algae bloom in lakes of Ningxia based on WQI method[J]. Environmental Chemistry, 2021, 40(7): 2073−2082. doi: 10.7524/j.issn.0254-6108.2020100301
|
[57] |
高磊, 姚海燕, 曹婧, 等. 滦河口邻近海域夏季海水叶绿素a时空分布特征及其影响因素[J]. 海洋湖沼通报, 2017(5): 109−113.
Gao Lei, Yao Haiyan, Cao Jing, et al. Temporal and spatial distribution of chlorophyll-a and its influencing factors in the Luanhe adjacent waters in summer[J]. Transactions of Oceanology and Limnology, 2017(5): 109−113.
|
[58] |
Kim E J, Nam S H, Koo J W, et al. Hybrid approach of unmanned aerial vehicle and unmanned surface vehicle for assessment of chlorophyll-a imagery using spectral indices in stream, South Korea[J]. Water, 2021, 13(14): 1930. doi: 10.3390/w13141930
|
[59] |
姚焕玫, 廖鹏任, 韦毅明, 等. 基于水体特征指数的广西北部湾近岸海域叶绿素a浓度反演[J]. 桂林理工大学学报, 2022, 42(2): 469−476. doi: 10.3969/j.issn.1674-9057.2022.02.023
Yao Huanmei, Liao Pengren, Wei Yiming, et al. Inversion of chlorophyll-a concentration in coastal waters of Beibu Gulf, Guangxi based on water feature index[J]. Journal of Guilin University of Technology, 2022, 42(2): 469−476. doi: 10.3969/j.issn.1674-9057.2022.02.023
|
[60] |
刘宇, 李旭龙. 基于水体指数的镜泊湖叶绿素a质量浓度反演研究[J]. 湖南农业大学学报(自然科学版), 2019, 45(2): 172−178.
Liu Yu, Li Xulong. The inversion study of chlorophyll a concentration in Jinpo Lake based on water body index[J]. Journal of Hunan Agricultural University (Natural Sciences), 2019, 45(2): 172−178.
|
[61] |
王小平, 张飞, Ghulam A, 等. 艾比湖流域地表水水质指标与水体指数关系研究[J]. 环境科学学报, 2017, 37(3): 900−909.
Wang Xiaoping, Zhang Fei, Ghulam A, et al. The relationship between the surface water quality indices and hydrology of Ebinur Lake watershed[J]. Acta Scientiae Circumstantiae, 2017, 37(3): 900−909.
|
[62] |
杨斌, 钟秋平, 鲁栋梁, 等. 钦州湾海域COD时空分布及对富营养化贡献分析[J]. 海洋科学, 2014, 38(3): 20−25.
Yang Bin, Zhong Qiuping, Lu Dongliang, et al. Temporal and spatial distributions of COD and its contribution to the eutrophication in the Qinzhou Bay[J]. Marine Sciences, 2014, 38(3): 20−25.
|
[63] |
高劲松, 陈波, 陆海生, 等. 钦州湾潮流场及污染物输运特征的数值研究[J]. 广西科学, 2014, 21(4): 345−350. doi: 10.3969/j.issn.1005-9164.2014.04.005
Gao Jingsong, Chen Bo, Lu Haisheng, et al. Numerical study on the characteristics of tidal current field and pollutant transport in Qinzhou Bay[J]. Guangxi Sciences, 2014, 21(4): 345−350. doi: 10.3969/j.issn.1005-9164.2014.04.005
|
[64] |
Zhang Yumeng, Jing Wenlong, Deng Yingbin, et al. Water quality parameters retrieval of coastal mariculture ponds based on UAV multispectral remote sensing[J]. Frontiers in Environmental Science, 2023, 11: 1079397. (查阅网上资料, 该文献与第30条文献重复, 请确认)
|
[65] |
马贵范, 郭文学, 王玲玲, 等. 养殖密度和换水量及频率对凡纳滨对虾生长的影响[J]. 渔业现代化, 2018, 45(4): 21−26,48. doi: 10.3969/j.issn.1007-9580.2018.04.004
Ma Guifan, Guo Wenxue, Wang Lingling, et al. Effects of culturing density and water exchange rate and frequency on growth of Litopenaeus vannamei[J]. Fishery Modernization, 2018, 45(4): 21−26,48. doi: 10.3969/j.issn.1007-9580.2018.04.004
|
[66] |
李云梅, 赵焕, 毕顺, 等. 基于水体光学分类的二类水体水环境参数遥感监测进展[J]. 遥感学报, 2022, 26(1): 19−31. doi: 10.11834/jrs.20221212
Li Yunmei, Zhao Huan, Bi Shun, et al. Research progress of remote sensing monitoring of case Ⅱ water environmental parameters based on water optical classification[J]. National Remote Sensing Bulletin, 2022, 26(1): 19−31. doi: 10.11834/jrs.20221212
|
[67] |
刘忠华, 李云梅, 吕恒, 等. 基于生物光学模型的巢湖后向散射概率估算[J]. 环境科学, 2011, 32(2): 464−471.
Liu Zhonghua, Li Yunmei, Lü Heng, et al. Estimating of backscattering rate in Lake Chaohu based on bio-optical model[J]. Environmental Science, 2011, 32(2): 464−471.
|