Message Board

Respected readers, authors and reviewers, you can add comments to this page on any questions about the contribution, review, editing and publication of this journal. We will give you an answer as soon as possible. Thank you for your support!

Full name
E-mail
Phone number
Title
Message
Verification Code
Turn off MathJax
Article Contents
MO Jinying,TIAN Yichao,WANG Jiale, et al. Remote sensing inversion of COD in Maowei Sea and nearshore aquaculture ponds based on machine learning[J]. Haiyang Xuebao,2025, 47(x):1–13
Citation: MO Jinying,TIAN Yichao,WANG Jiale, et al. Remote sensing inversion of COD in Maowei Sea and nearshore aquaculture ponds based on machine learning[J]. Haiyang Xuebao,2025, 47(x):1–13

Remote sensing inversion of COD in Maowei Sea and nearshore aquaculture ponds based on machine learning

  • Received Date: 2024-07-14
  • Rev Recd Date: 2025-02-07
  • Available Online: 2025-04-14
  • COD is an critical parameter for measuring the degree of organic pollution in water bodies. Using remote sensing inversion to quickly obtain the spatiotemporal distribution of COD concentration is essential for aquaculture pollution control and nearshore ecological environment protection. This study used Sentinel-2 extracted single band, vegetation index (NDVI), and water index (NDWI) to evaluate the performance of six models, including catboost regression (CBR), gradient boost regression (GBR), k-nearest neighbor regression (KNNR), light generalized boosted regression (LGBM), random forest (RF), and extreme gradient boosting regression (XGBR). The performance of each model was evaluated with the coefficient of determination (R2) and root mean square error (RMSE). The spatiotemporal distribution characteristics of COD concentration Maowei Sea and its coastal aquaculture ponds were analyzed. The results showed that: (1) The XGBR model had the best predictive performance, with a test set R2 of 0.9432 and an RMSE of 1.4033 mg/L. (2) B8a, B2, and NDVI contributed significantly to the XGBR inversion model. (3) During the period of 2019-2023, the annual average concentration of COD in the aquaculture pond water ranged from 16.23 to 17.39 mg/L, with a relatively uniform spatial distribution pattern; The annual average concentration of COD in Maowei Sea ranged from 2.30 to 2.88 mg/L, showing a distribution pattern of decreasing from the inner bay to the outer bay and higher near the shore than far shore. This study has validated the remarkable universal applicability of the XGBR model when applied simultaneously to COD inversion in two specific aquatic environments: aquaculture waters and their coastal seas. The relevant findings not only provide valuable insights for COD inversion under various complex water quality conditions but also offer robust technical support and a solid theoretical foundation for aquaculture activities and environmental management in coastal areas.
  • loading
  • [1]
    马达开, 尹洧. 水环境中有机污染综合指标监测方法及其进展[J]. 实验与分析, 2023, 1(1): 6−10.

    Ma Dakai, Yin Wei. Monitoring methods and progress of organic pollutants in water environment[J]. Labor Praxis, 2023, 1(1): 6−10.
    [2]
    Naylor R L, Hardy R W, Buschmann A H, et al. A 20-year retrospective review of global aquaculture[J]. Nature, 2021, 591(7851): 551−563. doi: 10.1038/s41586-021-03308-6
    [3]
    第二次全国污染源普查公报[J]. 环境保护, 2020, 48(18): 8−10. (查阅网上资料, 未找到本条文献作者信息, 请确认)

    The second national pollution source census bulletin[J]. Environmental Protection, 2020, 48(18): 8−10.
    [4]
    陈一波, 宋国宝, 赵文星, 等. 中国海水养殖污染负荷估算[J]. 海洋环境科学, 2016, 35(1): 1−6,12.

    Chen Yibo, Song Guobao, Zhao Wenxing, et al. Estimating pollutant loadings from mariculture in China[J]. Marine Environmental Science, 2016, 35(1): 1−6,12.
    [5]
    邱嘉玲, 刘庆玉, 贺莉. 化学需氧量检测标准与检测方法进展[J]. 化学研究与应用, 2023, 35(12): 2809−2819.

    Qiu Jialing, Liu Qingyu, He Li. Chemical oxygen demand test standard and test method[J]. Chemical Research and Application, 2023, 35(12): 2809−2819.
    [6]
    范日高, 王武, 郑芝芳, 等. 近红外光谱的水体污染指标COD定量预测模型[J]. 福州大学学报(自然科学版), 2024, 52(2): 228−235.

    Fan Rigao, Wang Wu, Zheng Zhifang, et al. Quantitative prediction model of COD water pollution index based on near-infrared spectroscopy[J]. Journal of Fuzhou University (Natural Science Edition), 2024, 52(2): 228−235.
    [7]
    Zheng Zijia, Jiang Yizhu, Zhang Qiutong, et al. A feature selection method based on relief feature ranking with recursive feature elimination for the inversion of urban river water quality parameters using multispectral imagery from an unmanned aerial vehicle[J]. Water, 2024, 16(7): 1029. doi: 10.3390/w16071029
    [8]
    Zhang Yishan, Kong Xin, Deng Licui, et al. Monitor water quality through retrieving water quality parameters from hyperspectral images using graph convolution network with superposition of multi-point effect: a case study in Maozhou River[J]. Journal of Environmental Management, 2023, 342: 118283. doi: 10.1016/j.jenvman.2023.118283
    [9]
    董月群, 冒建华, 梁丹, 等. 城市河道无人机高光谱水质监测与应用[J]. 环境科学与技术, 2021, 44(S1): 289−296.

    Dong Yuequn, Mao Jianhua, Liang Dan, et al. Water quality monitoring and application in urban river based on hyperspectral of unmanned aerial vehicle[J]. Environmental Science & Technology, 2021, 44(S1): 289−296.
    [10]
    Hou Yikai, Zhang Anbing, Lv Rulan, et al. A study on water quality parameters estimation for urban rivers based on ground hyperspectral remote sensing technology[J]. Environmental Science and Pollution Research, 2022, 29(42): 63640−63654. doi: 10.1007/s11356-022-20293-z
    [11]
    陈瑶, 黄长平, 张立福, 等. 水体COD光谱特性分析及遥感反演模型构建[J]. 光谱学与光谱分析, 2020, 40(3): 824−830.

    Chen Yao, Huang Changping, Zhang Lifu, et al. Spectral characteristics analysis and remote sensing retrieval of COD concentration[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 824−830.
    [12]
    赵旭阳, 刘征, 贺军亮, 等. 黄壁庄水库水质参数遥感反演研究[J]. 地理与地理信息科学, 2007, 23(6): 46−49.

    Zhao Xuyang, Liu Zheng, He Junliang, et al. Hyperspectral characteristics and retrieval of water quality parameters for Huangbizhuang Reservoir[J]. Geography and Geo-Information Science, 2007, 23(6): 46−49.
    [13]
    Yang Zhe, Gong Cailan, Ji Tiemei, et al. Water quality retrieval from ZY1-02D hyperspectral imagery in urban water bodies and comparison with sentinel-2[J]. Remote Sensing, 2022, 14(19): 5029. doi: 10.3390/rs14195029
    [14]
    盛辉, 池海旭, 许明明, 等. 改进SVR的内陆水体COD高光谱遥感反演[J]. 光谱学与光谱分析, 2021, 41(11): 3565−3571.

    Sheng Hui, Chi Haixu, Xu Mingming, et al. Inland water chemical oxygen demand estimation based on improved SVR for hyperspectral data[J]. Spectroscopy and Spectral Analysis, 2021, 41(11): 3565−3571.
    [15]
    鲁婉婷, 徐攻博, 王昱, 等. 基于北京二号卫星影像与同步实测数据的椒江入海口水质遥感反演[J]. 杭州师范大学学报(自然科学版), 2023, 22(2): 218−224.

    Lu Wanting, Xu Gongbo, Wang Yu, et al. Remote sensing retrieval of water quality at Jiaojiang Estuary based on Beijing No. 2 satellite image and synchronously measured data[J]. Journal of Hangzhou Normal University (Natural Science Edition), 2023, 22(2): 218−224.
    [16]
    王丽艳, 史小红, 孙标, 等. 基于MODIS数据遥感反演呼伦湖水体COD浓度的研究[J]. 环境工程, 2014, 32(12): 103−108.

    Wang Liyan, Shi Xiaohong, Sun Biao, et al. Determination of COD concentration of water in Hulun Lake based on MODIS data[J]. Environmental Engineering, 2014, 32(12): 103−108.
    [17]
    解启蒙, 林茂森, 杨国范, 等. 清河水库水体高锰酸盐指数遥感反演模型研究[J]. 中国农村水利水电, 2017(10): 57−61.

    Xie Qimeng, Lin Maosen, Yang Guofan, et al. Study on remote sensing inversion model of permanganate index in Qinghe Reservoir[J]. China Rural Water and Hydropower, 2017(10): 57−61.
    [18]
    郭荣幸, 王超梁, 陈济民, 等. 基于Sentinel-2多光谱遥感影像的小浪底水质反演[J]. 人民黄河, 2024, 46(1): 93−96,102. doi: 10.3969/j.issn.1000-1379.2024.01.016

    Guo Rongxing, Wang Chaoliang, Chen Jimin, et al. Remote sensing inversion of water quality of Xiaolangdi Reservoir based on Sentinel-2 multi-spectral images[J]. Yellow River, 2024, 46(1): 93−96,102. doi: 10.3969/j.issn.1000-1379.2024.01.016
    [19]
    Cao Xin, Zhang Jing, Meng Haobin, et al. Remote sensing inversion of water quality parameters in the Yellow River Delta[J]. Ecological Indicators, 2023, 155: 110914. doi: 10.1016/j.ecolind.2023.110914
    [20]
    Peng Changchun, Xie Zhijun, Jin Xing. Using ensemble learning for remote sensing inversion of water quality parameters in Poyang Lake[J]. Sustainability, 2024, 16(8): 3355. doi: 10.3390/su16083355
    [21]
    王姣, 李威, 赵卫权, 等. 基于哨兵-2数据的喀斯特高原深水湖库CODMn遥感反演[J]. 遥感技术与应用, 2024, 39(1): 98−109.

    Wang Jiao, Li Wei, Zhao Weiquan, et al. Retrieving CODMn concentration in Karst Plateau Deep Lake reservoir using Sentinel-2 data[J]. Remote Sensing Technology and Application, 2024, 39(1): 98−109.
    [22]
    高佳欣, 林昱坤, 涂耀仁, 等. 遥感反演技术应用于监测地表水体水质参数的现状与展望[J]. 遥感信息, 2023, 38(6): 1−14.

    Gao Jiaxin, Lin Yukun, Tu Yaoren, et al. Current status and prospects of remote sensing inversion technology applied to monitoring water quality parameters of surface water[J]. Remote Sensing Information, 2023, 38(6): 1−14.
    [23]
    Yang Haibo, Kong Jialin, Hu Huihui, et al. A review of remote sensing for water quality retrieval: progress and challenges[J]. Remote Sensing, 2022, 14(8): 1770. doi: 10.3390/rs14081770
    [24]
    Cao Jiaju, Wen Xingping, Luo Dayou, et al. Study on water quality inversion model of Dianchi Lake based on Landsat 8 data[J]. Journal of Spectroscopy, 2022, 2022: 3341713.
    [25]
    黄振辉, 杨小红, 王力哲, 等. 小样本下大冶湖非光学活性水质参数反演与时空变化分析[J]. 长江流域资源与环境, 2024, 33(1): 102−113.

    Huang Zhenhui, Yang Xiaohong, Wang Lizhe, et al. Inversion and spatiotemporal variation of non-optically active water quality parameters in Daye Lake with small samples[J]. Resources and Environment in the Yangtze Basin, 2024, 33(1): 102−113.
    [26]
    Gholizadeh M, Saeedi R, Bagheri A, et al. Machine learning-based prediction of effluent total suspended solids in a wastewater treatment plant using different feature selection approaches: a comparative study[J]. Environmental Research, 2024, 246: 118146. doi: 10.1016/j.envres.2024.118146
    [27]
    盛辉, 池海旭, 许明明, 等. 改进SVR的内陆水体COD高光谱遥感反演[J]. 光谱学与光谱分析, 2021, 41(11): 3565−3571. (查阅网上资料, 该文献与第14条文献重复, 请确认)

    Sheng Hui, Chi Haixu, Xu Mingming, et al. Inland water chemical oxygen demand estimation based on improved SVR for hyperspectral data[J]. Spectroscopy and Spectral Analysis, 2021, 41(11): 3565−3571.
    [28]
    Zhao Yubo, Yu Tao, Hu Bingliang, et al. Retrieval of water quality parameters based on near-surface remote sensing and machine learning algorithm[J]. Remote Sensing, 2022, 14(21): 5305. doi: 10.3390/rs14215305
    [29]
    王春玲, 史锴源, 明星, 等. 基于机器学习的水体化学需氧量高光谱反演模型对比研究[J]. 光谱学与光谱分析, 2022, 42(8): 2353−2358.

    Wang Chunling, Shi Kaiyuan, Ming Xing, et al. A comparative study of the COD hyperspectral inversion models in water based on the maching learning[J]. Spectroscopy and Spectral Analysis, 2022, 42(8): 2353−2358.
    [30]
    Zhang Yumeng, Jing Wenlong, Deng Yingbin, et al. Water quality parameters retrieval of coastal mariculture ponds based on UAV multispectral remote sensing[J]. Frontiers in Environmental Science, 2023, 11: 1079397. doi: 10.3389/fenvs.2023.1079397
    [31]
    邹志科, 余蕾, 张煜, 等. 基于Sentinel2-L1C的江汉平原水产养殖区水质参数反演[J]. 长江科学院院报, 2023, 40(9): 181−187,194. doi: 10.11988/ckyyb.20220515

    Zou Zhike, Yu Lei, Zhang Yu, et al. Inversion of water quality parameters in Jianghan Plain based on Sentinel2-L1C image[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(9): 181−187,194. doi: 10.11988/ckyyb.20220515
    [32]
    胡义强, 杨骥, 荆文龙, 等. 茅尾海入海河口池塘养殖污染状况遥感调查[J]. 测绘通报, 2022(7): 12−17,53.

    Hu Yiqiang, Yang Ji, Jing Wenlong, et al. Remote sensing investigation on water pollution of pond aquaculture in estuary of Maowei Sea[J]. Bulletin of Surveying and Mapping, 2022(7): 12−17,53.
    [33]
    Xu Cheng, Yang Bin, Dan S F, et al. Spatiotemporal variations of biogenic elements and sources of sedimentary organic matter in the largest oyster mariculture bay (Maowei Sea), Southwest China[J]. Science of the Total Environment, 2020, 730: 139056. doi: 10.1016/j.scitotenv.2020.139056
    [34]
    Yang Bin, Lan Rizhong, Lu Dongliang, et al. Phosphorus biogeochemical cycling in intertidal surface sediments from the Maowei Sea in the northern Beibu Gulf[J]. Regional Studies in Marine Science, 2019, 28: 100624. doi: 10.1016/j.rsma.2019.100624
    [35]
    黄友菊, 田义超, 张强, 等. 资源一号02D高光谱数据红树林地上生物量反演[J]. 光谱学与光谱分析, 2023, 43(12): 3906−3915.

    Huang Youju, Tian Yichao, Zhang Qiang, et al. Estimation of aboveground biomass of mangroves in Maowei Sea of Beibu Gulf based on ZY-1-02D satellite hyperspectral data[J]. Spectroscopy and Spectral Analysis, 2023, 43(12): 3906−3915.
    [36]
    高金荣, 赵则春. 钦州茅尾海海域化学需氧量的分布特征及与富营养化的关系[J]. 海洋湖沼通报, 2021, 43(3): 145−150.

    Gao Jinrong, Zhao Zechun. Distribution of COD and its relationship with Eutrophication in Maoweihai Bay of Qinzhou[J]. Transactions of Oceanology and Limnology, 2021, 43(3): 145−150.
    [37]
    Lu Dangliang, Zhang Dong, Zhu Wenjuan, et al. Sources and long-term variation characteristics of dissolved nutrients in Maowei Sea, Beibu Gulf, China[J]. Journal of Hydrology, 2022, 615: 128576. doi: 10.1016/j.jhydrol.2022.128576
    [38]
    Li Sijia, Song Kaishan, Wang Shuai, et al. Quantification of chlorophyll-a in typical lakes across China using Sentinel-2 MSI imagery with machine learning algorithm[J]. Science of the Total Environment, 2021, 778: 146271. doi: 10.1016/j.scitotenv.2021.146271
    [39]
    刘轩, 赵同谦, 蔡太义, 等. 丹江口水库总氮、氨氮遥感反演及时空变化研究[J]. 农业资源与环境学报, 2021, 38(5): 829−838.

    Liu Xuan, Zhao Tongqian, Cai Taiyi, et al. Spatiotemporal monitoring of total nitrogen and ammonia nitrogen in Danjiangkou reservoir[J]. Journal of Agricultural Resources and Environment, 2021, 38(5): 829−838.
    [40]
    Yuan Xingyu, Wang Shengrui, Fan Fuqiang, et al. Spatiotemporal dynamics and anthropologically dominated drivers of chlorophyll-a, TN and TP concentrations in the Pearl River Estuary based on retrieval algorithm and random forest regression[J]. Environmental Research, 2022, 215: 114380. doi: 10.1016/j.envres.2022.114380
    [41]
    McFeeters S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7): 1425−1432. doi: 10.1080/01431169608948714
    [42]
    Li Xiaojuan, Huang Mutao, Li Jianbao. Remote sensing inversion of lake water quality parameters based on ensemble modelling[C]//Proceedings of 2nd International Symposium on Architecture Research Frontiers and Ecological Environment (ARFEE 2019). EDP Sciences, 2020: 02007. (查阅网上资料, 未找到本条文献出版地信息, 请确认)
    [43]
    Gao Lin, Wang Xiaofei, Johnson B A, et al. Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: a review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 364−377. doi: 10.1016/j.isprsjprs.2019.11.018
    [44]
    朱冰川, 尤凯, 石浚哲, 等. 基于GOCI数据的太湖叶绿素a浓度反演和蓝藻水华遥感监测[J]. 环境污染与防治, 2020, 42(8): 1021−1025,1032.

    Zhu Bingchuan, You Kai, Shi Junzhe, et al. Retrieval of chlorophyll-a and remote sensing monitoring of cyanobacteria blooms in Taihu Lake based on GOCI data[J]. Environmental Pollution & Control, 2020, 42(8): 1021−1025,1032.
    [45]
    Prokhorenkova L, Gusev G, Vorobev A, et al. CatBoost: unbiased boosting with categorical features[C]//Proceedings of the 32nd International Conference on neural information processing systems. Montréal: Curran Associates Inc. , 2018.
    [46]
    Friedman J H. Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics, 2001, 29(5): 1189−1232. doi: 10.1214/aos/1013203450
    [47]
    Abedi F, Amirian‐Chakan A, Faraji M, et al. Salt dome related soil salinity in southern Iran: prediction and mapping with averaging machine learning models[J]. Land Degradation & Development, 2021, 32(3): 1540−1554.
    [48]
    唐茂淞, 张楠, 李国辉, 等. 基于机器学习算法的棉田土壤钾、钠离子量预测[J]. 灌溉排水学报, 2023, 42(9): 32−39.

    Tang Maosong, Zhang Nan, Li Guohui, et al. Predicting soil K+ and Na+ contents in cotton field using machine learning algorithm[J]. Journal of Irrigation and Drainage, 2023, 42(9): 32−39.
    [49]
    Hajihosseinlou M, Maghsoudi A, Ghezelbash R. A novel scheme for mapping of MVT-type Pb–Zn prospectivity: LightGBM, a highly efficient gradient boosting decision tree machine learning algorithm[J]. Natural Resources Research, 2023, 32(6): 2417−2438. doi: 10.1007/s11053-023-10249-6
    [50]
    程婉清, 袁定波, 熊鹏, 等. 基于多种机器学习算法的水质指数预测模型构建与评估[J]. 环境科学学报, 2023, 43(11): 144−152.

    Cheng Wanqing, Yuan Dingbo, Xiong Peng, et al. Construction and evaluation of city water quality index prediction model based on multiple machine learning algorithms[J]. Acta Scientiae Circumstantiae, 2023, 43(11): 144−152.
    [51]
    Genuer R, Poggi J M, Tuleau-Malot C. Variable selection using random forests[J]. Pattern Recognition Letters, 2010, 31(14): 2225−2236. doi: 10.1016/j.patrec.2010.03.014
    [52]
    Chen Tianqi, Guestrin C. Xgboost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: Association for Computing Machinery, 2016: 785−794.
    [53]
    贾涛, 韩萌, 王少峰, 等. 数据流决策树分类方法综述[J]. 南京师大学报(自然科学版), 2019, 42(4): 49−60.

    Jia Tao, Han Meng, Wang Shaofeng, et al. Survey of decision tree classification methods over data streams[J]. Journal of Nanjing Normal University (Natural Science Edition), 2019, 42(4): 49−60.
    [54]
    粟晖, 姚志湘, 黎国梁, 等. 生化废水COD的近红外光谱法测定[J]. 光谱实验室, 2011, 28(6): 3040−3043. doi: 10.3969/j.issn.1004-8138.2011.06.068

    Su Hui, Yao Zhixiang, Li Guoliang, et al. Determination of COD in biological and chemical wastewater by near infrared spectrometry[J]. Chinese Journal of Spectroscopy Laboratory, 2011, 28(6): 3040−3043. doi: 10.3969/j.issn.1004-8138.2011.06.068
    [55]
    唐海滨, 郑志伟, 胡莲, 等. 2008—2020年三峡库区小江叶绿素a的时空演变特征及驱动因子[J]. 湖泊科学, 2023, 35(5): 1529−1537. doi: 10.18307/2023.0512

    Tang Haibin, Zheng Zhiwei, Hu Lian, et al. Spatiotemporal characteristics and driver analysis of chlorophyll-a in Xiaojiang River of the Three Gorges Reservoir from 2008 to 2020[J]. Journal of Lake Sciences, 2023, 35(5): 1529−1537. doi: 10.18307/2023.0512
    [56]
    罗桂林, 田林锋. 基于WQI法的宁夏湖泊藻类爆发过程水环境质量变化及溯源探究[J]. 环境化学, 2021, 40(7): 2073−2082. doi: 10.7524/j.issn.0254-6108.2020100301

    Luo Guilin, Tian Linfeng. Study on water environmental quality change and source tracing of algae bloom in lakes of Ningxia based on WQI method[J]. Environmental Chemistry, 2021, 40(7): 2073−2082. doi: 10.7524/j.issn.0254-6108.2020100301
    [57]
    高磊, 姚海燕, 曹婧, 等. 滦河口邻近海域夏季海水叶绿素a时空分布特征及其影响因素[J]. 海洋湖沼通报, 2017(5): 109−113.

    Gao Lei, Yao Haiyan, Cao Jing, et al. Temporal and spatial distribution of chlorophyll-a and its influencing factors in the Luanhe adjacent waters in summer[J]. Transactions of Oceanology and Limnology, 2017(5): 109−113.
    [58]
    Kim E J, Nam S H, Koo J W, et al. Hybrid approach of unmanned aerial vehicle and unmanned surface vehicle for assessment of chlorophyll-a imagery using spectral indices in stream, South Korea[J]. Water, 2021, 13(14): 1930. doi: 10.3390/w13141930
    [59]
    姚焕玫, 廖鹏任, 韦毅明, 等. 基于水体特征指数的广西北部湾近岸海域叶绿素a浓度反演[J]. 桂林理工大学学报, 2022, 42(2): 469−476. doi: 10.3969/j.issn.1674-9057.2022.02.023

    Yao Huanmei, Liao Pengren, Wei Yiming, et al. Inversion of chlorophyll-a concentration in coastal waters of Beibu Gulf, Guangxi based on water feature index[J]. Journal of Guilin University of Technology, 2022, 42(2): 469−476. doi: 10.3969/j.issn.1674-9057.2022.02.023
    [60]
    刘宇, 李旭龙. 基于水体指数的镜泊湖叶绿素a质量浓度反演研究[J]. 湖南农业大学学报(自然科学版), 2019, 45(2): 172−178.

    Liu Yu, Li Xulong. The inversion study of chlorophyll a concentration in Jinpo Lake based on water body index[J]. Journal of Hunan Agricultural University (Natural Sciences), 2019, 45(2): 172−178.
    [61]
    王小平, 张飞, Ghulam A, 等. 艾比湖流域地表水水质指标与水体指数关系研究[J]. 环境科学学报, 2017, 37(3): 900−909.

    Wang Xiaoping, Zhang Fei, Ghulam A, et al. The relationship between the surface water quality indices and hydrology of Ebinur Lake watershed[J]. Acta Scientiae Circumstantiae, 2017, 37(3): 900−909.
    [62]
    杨斌, 钟秋平, 鲁栋梁, 等. 钦州湾海域COD时空分布及对富营养化贡献分析[J]. 海洋科学, 2014, 38(3): 20−25.

    Yang Bin, Zhong Qiuping, Lu Dongliang, et al. Temporal and spatial distributions of COD and its contribution to the eutrophication in the Qinzhou Bay[J]. Marine Sciences, 2014, 38(3): 20−25.
    [63]
    高劲松, 陈波, 陆海生, 等. 钦州湾潮流场及污染物输运特征的数值研究[J]. 广西科学, 2014, 21(4): 345−350. doi: 10.3969/j.issn.1005-9164.2014.04.005

    Gao Jingsong, Chen Bo, Lu Haisheng, et al. Numerical study on the characteristics of tidal current field and pollutant transport in Qinzhou Bay[J]. Guangxi Sciences, 2014, 21(4): 345−350. doi: 10.3969/j.issn.1005-9164.2014.04.005
    [64]
    Zhang Yumeng, Jing Wenlong, Deng Yingbin, et al. Water quality parameters retrieval of coastal mariculture ponds based on UAV multispectral remote sensing[J]. Frontiers in Environmental Science, 2023, 11: 1079397. (查阅网上资料, 该文献与第30条文献重复, 请确认)
    [65]
    马贵范, 郭文学, 王玲玲, 等. 养殖密度和换水量及频率对凡纳滨对虾生长的影响[J]. 渔业现代化, 2018, 45(4): 21−26,48. doi: 10.3969/j.issn.1007-9580.2018.04.004

    Ma Guifan, Guo Wenxue, Wang Lingling, et al. Effects of culturing density and water exchange rate and frequency on growth of Litopenaeus vannamei[J]. Fishery Modernization, 2018, 45(4): 21−26,48. doi: 10.3969/j.issn.1007-9580.2018.04.004
    [66]
    李云梅, 赵焕, 毕顺, 等. 基于水体光学分类的二类水体水环境参数遥感监测进展[J]. 遥感学报, 2022, 26(1): 19−31. doi: 10.11834/jrs.20221212

    Li Yunmei, Zhao Huan, Bi Shun, et al. Research progress of remote sensing monitoring of case Ⅱ water environmental parameters based on water optical classification[J]. National Remote Sensing Bulletin, 2022, 26(1): 19−31. doi: 10.11834/jrs.20221212
    [67]
    刘忠华, 李云梅, 吕恒, 等. 基于生物光学模型的巢湖后向散射概率估算[J]. 环境科学, 2011, 32(2): 464−471.

    Liu Zhonghua, Li Yunmei, Lü Heng, et al. Estimating of backscattering rate in Lake Chaohu based on bio-optical model[J]. Environmental Science, 2011, 32(2): 464−471.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article views (19) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return